Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New light shed on marine luminescence

23.02.2009
The mystery of how some marine animals produce light has come one step closer to being solved. Researchers at the University of Gothenburg have discovered that krill, the luminous crustacean, can use special and previously unknown muscles to regulate light intensity.

The phenomenon of light emission by living organisms, bioluminescence, is quite common, especially in marine species. It is known that light is generated by chemical reactions in which oxygen molecules play an important part.

In the animal world, these chemical reactions take place in special luminescent cells called photocytes. These are aggregated into complex light organs, in which the intensity of light is regulated by nerve impulses, and in which light can be modulated with the help of reflectors, lenses and filters. By these means, organisms can adjust the wavelength, diffusion and intensity of light according to need. But the exact mechanisms behind these processes remain shrouded in mystery.

Jenny Krönström, a researcher at the Department of Zoology of the University of Gothenburg has put another piece of the jigsaw puzzle in place by investigating the light organs of marine jellyfish, crustaceans and fish. In her thesis she reveals that krill, the luminescent crustacean, is equipped with special muscles that regulate light intensity through contraction and relaxation.

Nitric oxide is also thought to play an important role in the bioluminescence of krill. It is produced in the small capillary vessels that keep the krill's photocytes supplied with oxygen, as well as in special closure muscles, sphincters, that are located at the point where these capillaries distribute blood to the photocytes. Experiments with agents that make the sphincters contract or relax show that when the sphincters relax, the krill begins to luminesce, presumably because of the increased flow of oxygenated blood to the photocytes.

As bioluminescence has developed independently at several different points in evolution, different species have developed different methods of regulating and emitting light. Jenny Krönström's research demonstrates that nitric oxide also has different effects in different species. In the remarkable deep sea Silver Hatchetfish (Argyropelecus olfersii) nitric oxide inhibits the light reaction, whilst in the Plain Midshipman fish (Porichthys notatus) it has an opposite, stimulating effect.

Biological light is not only useful to the organism itself as a biological torch, camouflage or as a means of communication; the substances that are involved in the chemical luminescent reaction have also shown themselves to be useful in modern molecular biology, in which the discovery of green fluorescent protein, which produces green light in jellyfish, led to the Nobel Prize in Chemistry as recently as 2008.

The thesis "Control of bioluminescence: Operating the light switch in photophores from marine animals" was defended on February 20th 2009.

Images: The Silver Hatchetfish (Argyropelecus olfersii) and "light-switch" muscles of the luminescent krill.

For further information, please contact:
Jenny Krönström, Department of Zoology, University of Gothenburg.
+46 (0)703 960763
jenny.kronstrom@zool.gu.se

Krister Svahn | idw
Further information:
http://www.science.gu.se

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>