Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light-sensitive "eyes" in plants

05.05.2014

Most plants try to turn towards the sun. Scientists from the University of Gothenburg have worked with Finnish colleagues to understand how light-sensitive proteins in plant cells change when they discover light. The results have been published in the most recent issue of Nature.

The family of proteins involved is known as the “phytochrome” family, and these proteins are found in all plant leaves. These proteins detect the presence of light and inform the cell whether it is day or night, or whether the plant is in the shade or the sun.

“You can think of them as the plant’s ‘eyes’. Our study has shown how these eyes work at the molecular level,” explains Sebastian Westenhoff at the Department of Chemistry and Molecular Biology at the University of Gothenburg.

Molecules change in the light
Most plants try to avoid the shade and grow towards the light, which enables them, among other things, to consume more carbon dioxide through photosynthesis. Proteins known as “phytochromes” control this process. The phytochromes in the plants are thus changed through the light radiation, and signals are passed onwards to the cells.

Phytochromes have, as do most other proteins, a three-dimensional molecular structure. Light is absorbed by the phytochromes and the structure of the protein changes.

The scientists have studied this structural change in phytochromes from bacteria, since it is possible to obtain sufficient material to work on from bacteria.

“We already knew that some form of structural change was taking place, since the light signals must be transferred onwards to the cell. What we didn’t know, however, was how the structure changed, and this is what we have revealed. Nearly the complete molecule is rebuilt,” says Sebastian Westenhoff.

More efficient crops
The discovery increases our understanding of how phytochromes work. This may, in turn, lead to new strategies in the development of more efficient crops, which may be able to grow where there is little light.

“Proteins are the factories and machines of life, and their structures change when they carry out their specific tasks. At the moment, it’s usually not possible to determine these changes. But I believe that we can use similar experiments to determine many important structural changes in phytochromes and other proteins,” says Sebastian Westenhoff.

New measurement method
A new measurement method that Sebastian Westenhoff has developed has made the study possible. This method is based on using laser light to initiate the structural change. X-rays are then used to image the structural change.

The project has its origin in an approach made by scientist Janne Ihalainen from the University of Jyväslkyla two years ago.

“He asked whether we could use my method on phytochromes, which he had recently started working on.”

Link to the article: http://dx.doi.org/10.1038/nature13310
Contact:

Sebastian Westenhoff, Department for Chemistry and Molecular Biology, University of Gothenburg
Tel: +46 31 786 3936, E-mail: sebastian.westenhoff@chem.gu.se

Weitere Informationen:

http://www.science.gu.se/english/News/News_detail//light-sensitive--eyes--in-pla...

Carina Eliasson | idw - Informationsdienst Wissenschaft

Further reports about: Biology Molecular X-rays bacteria crops eyes measurement phytochromes proteins signals structure

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>