Light-sensitive "eyes" in plants

The family of proteins involved is known as the “phytochrome” family, and these proteins are found in all plant leaves. These proteins detect the presence of light and inform the cell whether it is day or night, or whether the plant is in the shade or the sun.

“You can think of them as the plant’s ‘eyes’. Our study has shown how these eyes work at the molecular level,” explains Sebastian Westenhoff at the Department of Chemistry and Molecular Biology at the University of Gothenburg.

Molecules change in the light
Most plants try to avoid the shade and grow towards the light, which enables them, among other things, to consume more carbon dioxide through photosynthesis. Proteins known as “phytochromes” control this process. The phytochromes in the plants are thus changed through the light radiation, and signals are passed onwards to the cells.

Phytochromes have, as do most other proteins, a three-dimensional molecular structure. Light is absorbed by the phytochromes and the structure of the protein changes.

The scientists have studied this structural change in phytochromes from bacteria, since it is possible to obtain sufficient material to work on from bacteria.

“We already knew that some form of structural change was taking place, since the light signals must be transferred onwards to the cell. What we didn’t know, however, was how the structure changed, and this is what we have revealed. Nearly the complete molecule is rebuilt,” says Sebastian Westenhoff.

More efficient crops
The discovery increases our understanding of how phytochromes work. This may, in turn, lead to new strategies in the development of more efficient crops, which may be able to grow where there is little light.

“Proteins are the factories and machines of life, and their structures change when they carry out their specific tasks. At the moment, it’s usually not possible to determine these changes. But I believe that we can use similar experiments to determine many important structural changes in phytochromes and other proteins,” says Sebastian Westenhoff.

New measurement method
A new measurement method that Sebastian Westenhoff has developed has made the study possible. This method is based on using laser light to initiate the structural change. X-rays are then used to image the structural change.

The project has its origin in an approach made by scientist Janne Ihalainen from the University of Jyväslkyla two years ago.

“He asked whether we could use my method on phytochromes, which he had recently started working on.”

Link to the article: http://dx.doi.org/10.1038/nature13310
Contact:

Sebastian Westenhoff, Department for Chemistry and Molecular Biology, University of Gothenburg
Tel: +46 31 786 3936, E-mail: sebastian.westenhoff@chem.gu.se

http://www.science.gu.se/english/News/News_detail//light-sensitive–eyes–in-pla…

Media Contact

Carina Eliasson idw - Informationsdienst Wissenschaft

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors