Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light-sensitive "eyes" in plants

05.05.2014

Most plants try to turn towards the sun. Scientists from the University of Gothenburg have worked with Finnish colleagues to understand how light-sensitive proteins in plant cells change when they discover light. The results have been published in the most recent issue of Nature.

The family of proteins involved is known as the “phytochrome” family, and these proteins are found in all plant leaves. These proteins detect the presence of light and inform the cell whether it is day or night, or whether the plant is in the shade or the sun.

“You can think of them as the plant’s ‘eyes’. Our study has shown how these eyes work at the molecular level,” explains Sebastian Westenhoff at the Department of Chemistry and Molecular Biology at the University of Gothenburg.

Molecules change in the light
Most plants try to avoid the shade and grow towards the light, which enables them, among other things, to consume more carbon dioxide through photosynthesis. Proteins known as “phytochromes” control this process. The phytochromes in the plants are thus changed through the light radiation, and signals are passed onwards to the cells.

Phytochromes have, as do most other proteins, a three-dimensional molecular structure. Light is absorbed by the phytochromes and the structure of the protein changes.

The scientists have studied this structural change in phytochromes from bacteria, since it is possible to obtain sufficient material to work on from bacteria.

“We already knew that some form of structural change was taking place, since the light signals must be transferred onwards to the cell. What we didn’t know, however, was how the structure changed, and this is what we have revealed. Nearly the complete molecule is rebuilt,” says Sebastian Westenhoff.

More efficient crops
The discovery increases our understanding of how phytochromes work. This may, in turn, lead to new strategies in the development of more efficient crops, which may be able to grow where there is little light.

“Proteins are the factories and machines of life, and their structures change when they carry out their specific tasks. At the moment, it’s usually not possible to determine these changes. But I believe that we can use similar experiments to determine many important structural changes in phytochromes and other proteins,” says Sebastian Westenhoff.

New measurement method
A new measurement method that Sebastian Westenhoff has developed has made the study possible. This method is based on using laser light to initiate the structural change. X-rays are then used to image the structural change.

The project has its origin in an approach made by scientist Janne Ihalainen from the University of Jyväslkyla two years ago.

“He asked whether we could use my method on phytochromes, which he had recently started working on.”

Link to the article: http://dx.doi.org/10.1038/nature13310
Contact:

Sebastian Westenhoff, Department for Chemistry and Molecular Biology, University of Gothenburg
Tel: +46 31 786 3936, E-mail: sebastian.westenhoff@chem.gu.se

Weitere Informationen:

http://www.science.gu.se/english/News/News_detail//light-sensitive--eyes--in-pla...

Carina Eliasson | idw - Informationsdienst Wissenschaft

Further reports about: Biology Molecular X-rays bacteria crops eyes measurement phytochromes proteins signals structure

More articles from Life Sciences:

nachricht Pathogenic bacteria hitchhiking to North and Baltic Seas?
22.07.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unconventional quasiparticles predicted in conventional crystals
22.07.2016 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>