Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New light on medicinal benefits of plants

15.12.2011
Scientists are about to make publicly available all the data they have so far on the genetic blueprint of medicinal plants and what beneficial properties are encoded by the genes identified.

The resources, to be released on Thursday, follow a $6 million initiative to study how plant genes contribute to producing various chemical compounds, some of which are medicinally important.

"Our major goal has been to capture the genetic blueprints of medicinal plants for the advancement of drug discovery and development," said Joe Chappell, professor of plant biochemistry in the University of Kentucky College of Agriculture and coordinator for the Medicinal Plant Consortium (MPC).

Project partner Dr Sarah O'Connor at the John Innes Centre will now work with her research group towards the first full genetic sequence of a medicinal plant and will also experiment with combining beneficial properties from different plants to create the first new-to-nature compounds derived from plants. A priority focus will be compounds with anticancer activity.

"Fewer and fewer new drugs have been successfully making it to the marketplace over the last 10 years, in large part because of a reliance on chemical synthesis for making new chemicals," said Chappell.

"Somehow in our fast-track lives, we forgot to take advantage of the lessons provided by Mother Nature. That is all changing now with the recognition that two-thirds of all currently prescribed drugs can be traced back to natural sources and the development of resources such as those in the MPC to facilitate new drug discovery activities."

Some well-known medicines have come from plants. The once ubiquitous foxglove gives us the cardiac muscle stimulant digoxin. The periwinkle plant offers a source for the widely used chemotherapy drugs vincristine and vinblastine. These and many other medicinal plants, often commonly found in household gardens and flower boxes, harbour a wealth of compounds ripe for medicinal applications.

"Just as the sensory properties of plants interact with and trigger your sense of smell, plants' natural compounds can target and cause a reaction within your body. This gives them tremendous pharmaceutical potential," said Chappell.

During this two-year project researchers set out to develop a collection of data that would aid in understanding how plants make chemicals, a process called biosynthesis. This knowledge ultimately could make it possible to engineer plants to produce larger quantities of medicinally useful compounds as well as different versions with other therapeutic potential.

To develop the resources, the researchers studied the genes and chemical profiles of 14 plants known for medicinal properties or compounds with biological activity. These included plants such as foxglove, ginseng, and periwinkle. The findings will help researchers discover how nature's chemical diversity is created and enable them to uncover new drug candidates or increase the efficacy of existing ones.

"The current understanding of molecules and genes involved in the formation of beneficial compounds is very incomplete," said O'Connor, who is also a lecturer in chemical sciences at University of East Anglia.

"However, the ability to conduct genome-wide studies of model plant species has resulted in an explosive increase in our knowledge of and capacity to understand how genes control biological processes and chemical composition".

The MPC project includes participants from the University of Kentucky, Michigan State University, Iowa State University, the University of Mississippi, Purdue University, Texas A&M University, Massachusetts Institute of Technology, and the John Innes Centre in Norwich. The researchers represent a broad spectrum of expertise from plant biology and systematics to analytical chemistry, genetics and molecular biology, and drug development from natural products.

More information about the MPC and the resources provided are available at the following websites: http://medicinalplantgenomics.msu.edu; http://metnetdb.org/mpmr_public/.

Contacts

JIC Press Office
Zoe Dunford, Tel: 01603 255111, email: zoe.dunford@nbi.ac.uk
Andrew Chapple, Tel: 01603 251490, email: andrew.chapple@nbi.ac.uk
University of Kentucky press office
Carl Nathe, (859) 257-3200; carl.nathe@uky.edu
Photo available:
Periwinkle (Catharanthus roseus), a source of potent chemotherapeutic drugs and a common horticultural plant found around the world.
Funding
Funding was provided by the National Institutes of Health (NIH) and the American Recovery and Reinvestment Act (ARRA

About the John Innes Centre:

The John Innes Centre, www.jic.ac.uk, is a world-leading research centre based on the Norwich Research Park www.nrp.org.uk. The JIC's mission is to generate knowledge of plants and microbes through innovative research, to train scientists for the future, and to apply its knowledge to benefit agriculture, human health and well-being, and the environment. JIC delivers world class bioscience outcomes leading to wealth and job creation, and generating high returns for the UK economy. JIC is one of eight institutes that receive strategic funding from the Biotechnology and Biological Sciences Research Council and received a total of £28.4M investment in 2010-11.

Zoe Dunford | EurekAlert!
Further information:
http://www.nbi.ac.uk

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>