Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New light on medicinal benefits of plants

15.12.2011
Scientists are about to make publicly available all the data they have so far on the genetic blueprint of medicinal plants and what beneficial properties are encoded by the genes identified.

The resources, to be released on Thursday, follow a $6 million initiative to study how plant genes contribute to producing various chemical compounds, some of which are medicinally important.

"Our major goal has been to capture the genetic blueprints of medicinal plants for the advancement of drug discovery and development," said Joe Chappell, professor of plant biochemistry in the University of Kentucky College of Agriculture and coordinator for the Medicinal Plant Consortium (MPC).

Project partner Dr Sarah O'Connor at the John Innes Centre will now work with her research group towards the first full genetic sequence of a medicinal plant and will also experiment with combining beneficial properties from different plants to create the first new-to-nature compounds derived from plants. A priority focus will be compounds with anticancer activity.

"Fewer and fewer new drugs have been successfully making it to the marketplace over the last 10 years, in large part because of a reliance on chemical synthesis for making new chemicals," said Chappell.

"Somehow in our fast-track lives, we forgot to take advantage of the lessons provided by Mother Nature. That is all changing now with the recognition that two-thirds of all currently prescribed drugs can be traced back to natural sources and the development of resources such as those in the MPC to facilitate new drug discovery activities."

Some well-known medicines have come from plants. The once ubiquitous foxglove gives us the cardiac muscle stimulant digoxin. The periwinkle plant offers a source for the widely used chemotherapy drugs vincristine and vinblastine. These and many other medicinal plants, often commonly found in household gardens and flower boxes, harbour a wealth of compounds ripe for medicinal applications.

"Just as the sensory properties of plants interact with and trigger your sense of smell, plants' natural compounds can target and cause a reaction within your body. This gives them tremendous pharmaceutical potential," said Chappell.

During this two-year project researchers set out to develop a collection of data that would aid in understanding how plants make chemicals, a process called biosynthesis. This knowledge ultimately could make it possible to engineer plants to produce larger quantities of medicinally useful compounds as well as different versions with other therapeutic potential.

To develop the resources, the researchers studied the genes and chemical profiles of 14 plants known for medicinal properties or compounds with biological activity. These included plants such as foxglove, ginseng, and periwinkle. The findings will help researchers discover how nature's chemical diversity is created and enable them to uncover new drug candidates or increase the efficacy of existing ones.

"The current understanding of molecules and genes involved in the formation of beneficial compounds is very incomplete," said O'Connor, who is also a lecturer in chemical sciences at University of East Anglia.

"However, the ability to conduct genome-wide studies of model plant species has resulted in an explosive increase in our knowledge of and capacity to understand how genes control biological processes and chemical composition".

The MPC project includes participants from the University of Kentucky, Michigan State University, Iowa State University, the University of Mississippi, Purdue University, Texas A&M University, Massachusetts Institute of Technology, and the John Innes Centre in Norwich. The researchers represent a broad spectrum of expertise from plant biology and systematics to analytical chemistry, genetics and molecular biology, and drug development from natural products.

More information about the MPC and the resources provided are available at the following websites: http://medicinalplantgenomics.msu.edu; http://metnetdb.org/mpmr_public/.

Contacts

JIC Press Office
Zoe Dunford, Tel: 01603 255111, email: zoe.dunford@nbi.ac.uk
Andrew Chapple, Tel: 01603 251490, email: andrew.chapple@nbi.ac.uk
University of Kentucky press office
Carl Nathe, (859) 257-3200; carl.nathe@uky.edu
Photo available:
Periwinkle (Catharanthus roseus), a source of potent chemotherapeutic drugs and a common horticultural plant found around the world.
Funding
Funding was provided by the National Institutes of Health (NIH) and the American Recovery and Reinvestment Act (ARRA

About the John Innes Centre:

The John Innes Centre, www.jic.ac.uk, is a world-leading research centre based on the Norwich Research Park www.nrp.org.uk. The JIC's mission is to generate knowledge of plants and microbes through innovative research, to train scientists for the future, and to apply its knowledge to benefit agriculture, human health and well-being, and the environment. JIC delivers world class bioscience outcomes leading to wealth and job creation, and generating high returns for the UK economy. JIC is one of eight institutes that receive strategic funding from the Biotechnology and Biological Sciences Research Council and received a total of £28.4M investment in 2010-11.

Zoe Dunford | EurekAlert!
Further information:
http://www.nbi.ac.uk

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>