Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light - elixir of life

13.08.2009
New DFG research group at Jena University investigates light-driven processes in algae

Sunlight influences every kind of life on earth. That is true for complex organisms, like human beings, as well as for the tiniest single-celled organisms.

Light is the basic resource of life, not just for highly-developed plants but also for green algae and diatoms. "Algae use light not only for the generation of energy", knows Prof. Dr. Maria Mittag from the Friedrich Schiller University Jena. "It also controls their movements and serves to adjust their biological clock", says the professor for general botany.

The different effects of the light spectrum on algae are communicated by specific proteins. Which proteins these are and how they interact is to be thoroughly investigated by Prof. Mittag and her team from all over Germany. The German Research Foundation (Deutsche Forschungsgemeinschaft (DFG)) supports the new research group "Specific Light-Driven Reactions in Unicellular Model Algae" currently for the next 3 years. The project is coordinated by Prof. Mittag.

One of the most important problems to be dealt with is the light regulation of the photosynthesis of the diatom Phaeodactylum tricornutum. "Hardly anything is known about it, although diatoms are responsible for approximately one fifth of the world's photosynthesis process", claims Prof. Mittag.

Apart from diatoms, the unicellular green alga Chlamydomonas reinhardtii is in the focus of the researchers' attention. "We want to clarify how the biological clock of these algae works", Prof. Mittag points out. Chlamydomonas reinhardtii has a well-developed day-and-night rhythm: During the day they tend to swim towards a light source with the help of their two flagellums. But during the night they seem to be unimpressed by light. For the perception of light green algae use a so-called eyespot - a primitive visual system. The Jena team around Prof. Mittag aims at finding out which proteins are involved in the process of light perception, which proteins control the day-and-night rhythm, and how they work.

On the whole, the new research group consists of seven projects at seven Universities. "Our group works interdisciplinarily", says coordinator Mittag. Apart from the Jena botanists, further molecular biologists, physiologists and biophysicists from the Universities of Frankfurt, Bielefeld, Konstanz, Würzburg, Leipzig and Berlin (Humboldt University) are integrated into the research group. Not only molecular-biological and biochemical methods are applied. Especially biophysical methods serve to characterize algae proteins. Since all genetic information have been known for both types of algae, modern high throughput technologies, i.e. for proteome research, can be used as well.

Contact:
Prof. Dr. Maria Mittag
Friedrich-Schiller-University Jena
Institute of General Botany and Plant Physiology
Am Planetarium 1
D-07743 Jena
Phone: 03641 / 949201
E-Mail: M.Mittag[at]uni-jena.de

Dr. Ute Schönfelder | idw
Further information:
http://www.uni-jena.de
http://www.uni-jena.de/DFG_Forschergruppe_1261.html

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>