Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light - elixir of life

13.08.2009
New DFG research group at Jena University investigates light-driven processes in algae

Sunlight influences every kind of life on earth. That is true for complex organisms, like human beings, as well as for the tiniest single-celled organisms.

Light is the basic resource of life, not just for highly-developed plants but also for green algae and diatoms. "Algae use light not only for the generation of energy", knows Prof. Dr. Maria Mittag from the Friedrich Schiller University Jena. "It also controls their movements and serves to adjust their biological clock", says the professor for general botany.

The different effects of the light spectrum on algae are communicated by specific proteins. Which proteins these are and how they interact is to be thoroughly investigated by Prof. Mittag and her team from all over Germany. The German Research Foundation (Deutsche Forschungsgemeinschaft (DFG)) supports the new research group "Specific Light-Driven Reactions in Unicellular Model Algae" currently for the next 3 years. The project is coordinated by Prof. Mittag.

One of the most important problems to be dealt with is the light regulation of the photosynthesis of the diatom Phaeodactylum tricornutum. "Hardly anything is known about it, although diatoms are responsible for approximately one fifth of the world's photosynthesis process", claims Prof. Mittag.

Apart from diatoms, the unicellular green alga Chlamydomonas reinhardtii is in the focus of the researchers' attention. "We want to clarify how the biological clock of these algae works", Prof. Mittag points out. Chlamydomonas reinhardtii has a well-developed day-and-night rhythm: During the day they tend to swim towards a light source with the help of their two flagellums. But during the night they seem to be unimpressed by light. For the perception of light green algae use a so-called eyespot - a primitive visual system. The Jena team around Prof. Mittag aims at finding out which proteins are involved in the process of light perception, which proteins control the day-and-night rhythm, and how they work.

On the whole, the new research group consists of seven projects at seven Universities. "Our group works interdisciplinarily", says coordinator Mittag. Apart from the Jena botanists, further molecular biologists, physiologists and biophysicists from the Universities of Frankfurt, Bielefeld, Konstanz, Würzburg, Leipzig and Berlin (Humboldt University) are integrated into the research group. Not only molecular-biological and biochemical methods are applied. Especially biophysical methods serve to characterize algae proteins. Since all genetic information have been known for both types of algae, modern high throughput technologies, i.e. for proteome research, can be used as well.

Contact:
Prof. Dr. Maria Mittag
Friedrich-Schiller-University Jena
Institute of General Botany and Plant Physiology
Am Planetarium 1
D-07743 Jena
Phone: 03641 / 949201
E-Mail: M.Mittag[at]uni-jena.de

Dr. Ute Schönfelder | idw
Further information:
http://www.uni-jena.de
http://www.uni-jena.de/DFG_Forschergruppe_1261.html

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

 
Latest News

International Workshop Sees Central Role for Solar in Transforming the World Energy Economy

28.05.2018 | Seminars Workshops

Cognitive Power Electronics 4.0 is gaining momentum

28.05.2018 | Trade Fair News

Organic light-emitting diodes become brighter and more durable

28.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>