Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light - elixir of life

13.08.2009
New DFG research group at Jena University investigates light-driven processes in algae

Sunlight influences every kind of life on earth. That is true for complex organisms, like human beings, as well as for the tiniest single-celled organisms.

Light is the basic resource of life, not just for highly-developed plants but also for green algae and diatoms. "Algae use light not only for the generation of energy", knows Prof. Dr. Maria Mittag from the Friedrich Schiller University Jena. "It also controls their movements and serves to adjust their biological clock", says the professor for general botany.

The different effects of the light spectrum on algae are communicated by specific proteins. Which proteins these are and how they interact is to be thoroughly investigated by Prof. Mittag and her team from all over Germany. The German Research Foundation (Deutsche Forschungsgemeinschaft (DFG)) supports the new research group "Specific Light-Driven Reactions in Unicellular Model Algae" currently for the next 3 years. The project is coordinated by Prof. Mittag.

One of the most important problems to be dealt with is the light regulation of the photosynthesis of the diatom Phaeodactylum tricornutum. "Hardly anything is known about it, although diatoms are responsible for approximately one fifth of the world's photosynthesis process", claims Prof. Mittag.

Apart from diatoms, the unicellular green alga Chlamydomonas reinhardtii is in the focus of the researchers' attention. "We want to clarify how the biological clock of these algae works", Prof. Mittag points out. Chlamydomonas reinhardtii has a well-developed day-and-night rhythm: During the day they tend to swim towards a light source with the help of their two flagellums. But during the night they seem to be unimpressed by light. For the perception of light green algae use a so-called eyespot - a primitive visual system. The Jena team around Prof. Mittag aims at finding out which proteins are involved in the process of light perception, which proteins control the day-and-night rhythm, and how they work.

On the whole, the new research group consists of seven projects at seven Universities. "Our group works interdisciplinarily", says coordinator Mittag. Apart from the Jena botanists, further molecular biologists, physiologists and biophysicists from the Universities of Frankfurt, Bielefeld, Konstanz, Würzburg, Leipzig and Berlin (Humboldt University) are integrated into the research group. Not only molecular-biological and biochemical methods are applied. Especially biophysical methods serve to characterize algae proteins. Since all genetic information have been known for both types of algae, modern high throughput technologies, i.e. for proteome research, can be used as well.

Contact:
Prof. Dr. Maria Mittag
Friedrich-Schiller-University Jena
Institute of General Botany and Plant Physiology
Am Planetarium 1
D-07743 Jena
Phone: 03641 / 949201
E-Mail: M.Mittag[at]uni-jena.de

Dr. Ute Schönfelder | idw
Further information:
http://www.uni-jena.de
http://www.uni-jena.de/DFG_Forschergruppe_1261.html

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>