Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing the light in the egg of a clawed frog

13.04.2010
When plants protect themselves against drying out, processes take place in which calcium plays an important role, just as it does in muscle contraction in humans. Now for the first time, Dietmar Geiger and Rainer Hedrich from the Department of Molecular Plant Physiology and Biophysics at the University of Würzburg have shed light on exactly what happens.

Plants produce sugar during photosynthesis. Water is released into the environment in the form of water vapor. This is the responsibility of tiny "valves" on the surface of the leaf, which consist of guard cells arranged in pairs. Depending on whether these guard cells are bulging or comparatively empty, they change their shape - in the same way as a swim ring, which is circular when inflated but can be folded tightly when all the air is released from it.


Plants can absorb carbon dioxide and release water vapor through microscopically small, controllable pores in their outer skin. The pores consist of two guard cells: when these expand, the pore opens. Photo: Department of Molecular Plant Physiology and Biophysics, University of Würzburgt

Guard cells regulate the water exchange

In plant terms, this means as follows: two bulging guard cells form a circle, enabling the release of water vapor into the environment. If they go limp, the valve closes, the plant retains the water internally, and in so doing protects itself against drying out. How this process works at molecular level has been examined by Dr. Dietmar Geiger. Geiger works as an assistant to Professor Rainer Hedrich in the Department of Molecular Plant Physiology and Biophysics.

The findings of his work are reported in the current issue of the journal Proceedings of the National Academy of Sciences (PNAS, USA).

"During times of drought, plants create what is known as a drought stress hormone, which causes the pairs of guard cells to go limp through a chain of reactions in which calcium is also involved," explains Dietmar Geiger. The "valve" closes, thereby reducing the release of water from the leaf. As the biophysicists discovered in earlier experiments, this process involves certain ion channels and enzymes that fine-tune the process. The scientists were able to clarify which ones exactly using a clever technique that Rainer Hedrich established a good ten years ago that allows ion channels to be examined outside plant cells. The key components are: eggs from a clawed frog and a yellow fluorescent protein.

Complicated search for the enzyme responsible

"The earlier work by Dietmar Geiger, which was also published in PNAS, led us to assume that a very specific anion channel is involved in this process," explains Rainer Hedrich. What was, however, a mystery was which enzyme is responsible for opening this channel to calcium ions. There were, after all, 34 enzymes to choose from.

It was a molecular biology trick that helped them see the light, quite literally: "We coupled the gene for the guard cell anion channel to one half of the gene for the yellow fluorescent protein. We then bonded the other half to each of the 34 possible enzyme genes in turn," explains Dietmar Geiger.

Traces of light in the egg of a clawed frog

The idea behind this: in this scenario, the yellow fluorescent protein will only illuminate when the proteins of the enzyme and of the anion channel that have been fused to the two halves are moved to within close proximity to one another. And the eggs of the clawed frog came into play because, firstly, they are sufficiently transparent and, secondly, they work perfectly as a "test tube for loading with foreign genes and translating into active proteins," says Rainer Hedrich.

The two scientists did indeed succeed in identifying the corresponding calcium-dependent enzyme, a so-called kinase, using this elegant, experimental approach, with the ion channel as bait. The Würzburg "channel workers" then applied the same approach to determine the enzyme that disables the channel again - a protein phosphatase.

Support from Munich

The following questions remained: how do these two switch elements sense the drought stress hormone, and what sensor regulates the activity of the kinase/phosphatase pair? To find this out, the Würzburg researchers collaborated with Professor Erwin Grill's team from the Technical University Munich. The people from Munich had identified a protein that deactivates the phosphatase when it has bonded with the water stress hormone.

This knowledge gave them the final link in the signal chain: "In the presence of the stress hormone, a receptor is stimulated that inhibits the phosphatase. The kinase transfers energy-rich phosphate to the anion channel, thereby activating it. The release of anions triggers a flow of potassium and water, the guard cells release their pressure, and the plant survives the drought with its stomata tightly closed", explains Dietmar Geiger.

However, not every question has been answered. There is just "one small, but not insignificant detail" remaining, says Rainer Hedrich: "How does the calcium ion get into the cell?" But for this too the Würzburg plant physiologists have already come up with an idea.

The researchers

Dr. Dietmar Geiger received his doctorate at the Department of Molecular Plant Physiology and Biophysics. He then became a post-doctoral student at the Max Planck Institute of Biophysics in Frankfurt. As an assistant to Professor Rainer Hedrich, he applies molecular and biophysical methods in order to understand the structures of ion channels and metabolite carriers that account for the special function of membrane proteins.

Professor Rainer Hedrich was a pioneer in the discovery and deciphering of the special function of ion channels in plants. So far, he has deciphered all the major ion channels of the guard cell - starting with his discovery of the first ion channel in plants, the potassium channel of the guard cell, back in 1984 while working toward his doctorate.

"Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities"; Dietmar Geiger, Sönke Scherzer, Patrick Mumm, Irene Marten, Peter Ache, Susanne Matschi, Anja Liese, Christian Wellmann, Khaled A.S. AL-Rasheid, Erwin Grill, Tina Romeis and Rainer Hedrich. Proc Natl Acad Sci USA. doi/10.1073/pnas.0912030107

Contact:
Prof. Dr. Rainer Hedrich, T: +49 (0)931 31-86100,
e-mail: hedrich@botanik.uni-wuerzburg.de
Dr. Dietmar Geiger, T: +49 (0)931 31-86105,
e-mail: geiger@botanik.uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Further information:
http://www.botanik.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Opening the cavity floodgates
23.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Incentive to Move
23.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks Industry & Economy
Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Researchers reveal how microbes cope in phosphorus-deficient tropical soil

23.01.2018 | Earth Sciences

Opening the cavity floodgates

23.01.2018 | Life Sciences

Siberian scientists suggested a new method for synthesizing a promising magnetic material

23.01.2018 | Materials Sciences

VideoLinks Science & Research
Overview of more VideoLinks >>>