Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using Light to Control Cell Clustering

14.02.2013
New Study Advances Leading-Edge Field of Optogenetics at Rensselaer Polytechnic Institute and UC Berkeley

A new study from engineers at Rensselaer Polytechnic Institute and the University of California, Berkeley, pairs light and genetics to give researchers a powerful new tool for manipulating cells. Results of the study, published in the journal Nature Methods, show how blue light can be used as a switch to prompt targeted proteins to accumulate into large clusters.

This process of clustering, or oligomerization, is commonly employed by nature to turn on or turn off specific signaling pathways used in cells’ complex system of communications. The new study details how this process can be replicated with great precision, giving researchers new capabilities to control and influence the process of oligomerization and cell signaling.

Ravi Kane, the P.K. Lashmet Professor in the Howard P. Isermann Department of Chemical and Biological Engineering and faculty member of the Center for Biotechnology and Interdisciplinary Studies at Rensselaer, co-led the study with Professor David Schaffer of the Department of Chemical Engineering at the UC Berkeley. This study was made possible with support from the U.S. Department of Energy’s Office of Basic Energy Science.

“Our study shows a new use for using energy, in this case light, as a tool to understand and control cellular function. In this study, we demonstrated a new method for turning specific cell signaling pathways on and off with spatial and temporal precision, and use this to help better understand the dynamics of the pathway. At the same time, our technique can be used to control certain cell functions,” Kane and Schaffer said.

Looking ahead, Kane said, it is possible the new process may also one day be able to help optimize cellular function and produce products of interest to energy production, such as biofuels.

Results of the study, titled “Optogenetic protein clustering and signaling activation in mammalian cells,” were published online last week by Nature Methods and will appear in a future print edition of the journal. The study may be viewed online at: http://go.nature.com/jPqpHa

Light is an attractive tool to manipulate oligomerization, Kane said, because of three properties: most biological cells do not normally react or respond to light; light is easy to make; and researchers can easily control light properties including its color and intensity. In this new study, the research team shined blue light onto cells containing a bioengineered protein, and by doing so they were able to activate cell signaling more effectively than they could using the natural ligand Wnt3a. This protein clustering induced by shining light was reversible—upon removing the blue light, the cluster broke up within a few minutes. The researchers also demonstrated how to use this modular technique to cluster proteins that control cell shape.

“The new process can be applied to many different types of proteins, signaling pathways, and cells,” said study co-author Lukasz Bugaj, graduate student at UC Berkeley. The research team plans to continue investigating new ways of controlling different aspects of cells and cellular function with light.

Along with Kane, Schaffer, and Bugaj, co-authors of the paper are UC Berkeley graduate student Colin Mesuda and research assistant Atri Choksi.

For more information on Kane and his research at Rensselaer, visit:

• Rensselaer Researchers Develop Coating That Safely Kills MRSA on Contact
http://news.rpi.edu/update.do?artcenterkey=2759
• Q&A: 3° with Ravi Kane
http://approach.rpi.edu/2009/04/15/3%C2%B0-with-ravi-kane/
• Using Carbon Nanotubes To Seek and Destroy Anthrax Toxin and Other Harmful Proteins

http://news.rpi.edu/update.do?artcenterkey=2369

• Seaweed Transformed Into Stem Cell Technology
http://news.rpi.edu/update.do?artcenterkey=2351
• Kane Named P.K. Lashmet Professor at Rensselaer
http://news.rpi.edu/update.do?artcenterkey=2515
• Kane Wins 2009 ACS Young Investigator Award
http://news.rpi.edu/update.do?artcenterkey=2556
• Kane Wins AIChE Young Investigator Award
http://news.rpi.edu/update.do?artcenterkey=2481
Contact
Michael Mullaney
Rensselaer Polytechnic Institute
Troy, NY
518-276-6161
mullam@rpi.edu
www.rpi.edu/news
Visit the Rensselaer research and discovery blog: http://approach.rpi.edu
Follow us on Twitter: www.twitter.com/RPInews

Michael Mullaney | Newswise
Further information:
http://www.rpi.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>