Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lifestyle Influences Metabolism via DNA Methylation

23.09.2013
An unhealthy lifestyle leaves traces in the DNA. These may have specific effects on metabolism, causing organ damage or disease. Scientists of Helmholtz Zentrum München have now identified 28 DNA alterations associated with metabolic traits. This world-first epigenome-wide association study (EWAS) of modified genes and metabolites has been now published in the journal Human Molecular Genetics.

In the course of life, aging processes, environmental influences and lifestyle factors such as smoking or diet induce biochemical alterations to the DNA. Frequently, these lead to DNA methylation, a process in which methyl groups are added to particular DNA segments, without changing the DNA sequence. Such processes can influence gene function and are known as epigenetics. Scientists of the Institute of Genetic Epidemiology (IGE) and the Research Unit Molecular Epidemiology (AME) at Helmholtz Zentrum München are seeking to determine what association exists between these epigenetic processes and the health consequences, in particular for the metabolism.

To this end, the team led by Christian Gieger (IGE) and Melanie Waldenberger (AME), in in collaboration with Karsten Suhre of Weill Cornell Medical College in Qatar analyzed blood samples from more than 1800 participants of the KORA study *. In doing so, they analyzed more than 457,000 loci in the DNA as to biochemical alterations and compared them with the concentrations of 649 different metabolites. The analysis showed that the methylation of 28 DNA segments changed a number of important metabolic processes.

In the relevant DNA regions there were also already known disease-related genes: for example, the TXNIP gene that regulates glucose metabolism and is associated with the development of diabetes mellitus. Appropriately, with the methylated TXNIP there were altered concentrations of metabolites from the lipid and glucose metabolism. Also genes that are known to be biochemically altered due to smoking affect different metabolic activities, and specifically those with corresponding biological functions.

“This study gives us new insights into how lifestyle factors can influence metabolism via the resulting alterations in the DNA,” said Gieger, research group leader at the IGE. “We can now use these results to develop new diagnostic and therapeutic approaches for lifestyle-related diseases such as diabetes.”

Further information

*KORA(Kooperative Gesundheitsforschung in der Region Augsburg)
For more than 20 years, the research platform Cooperative Health Research in the Augsburg Region (KORA) has been collecting and analyzing data on the health of thousands of people living in the Augsburg region. The objective is to elucidate the effects of environmental factors, behavior and genes. KORA focuses on the development and course of chronic diseases, in particular myocardial infarction and diabetes mellitus. Risk factors are analyzed with regard to individual health behavior (e.g. smoking, diet, exercise), environmental factors (e.g. air pollution, noise) and genetics. From the perspective of health care research, questions regarding the utilization of health care resources and the cost of health care are also studied. www.helmholtz-muenchen.de/kora

Original publication:

Petersen, A.-K. et al. (2013). Epigenetics meets metabolomics: An epigenome-wide association study with blood serum metabolic traits, Human Molecular Genetics, doi: 10.1093/hmg/ddt430

Link to publication

As German Research Center for Environmental Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,100 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum München is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 34,000 staff members. www.helmholtz-muenchen.de

Research at the Institute of Genetic Epidemiology (IGE) is concerned with genetic statistics. This encompasses the planning, execution and analysis of gene mapping projects related to complex diseases as well as the development and implementation of new statistical methods. The activities extend to genome-wide association studies and linkage analyses (family studies) of a wide variety of diseases. A focus is on phenotypes that are studied within the framework of the population-based KORA cohort. The aim of the Institute is to contribute to the elucidation of the genetic causes of complex diseases.

TheResearch Unit of Molecular Epidemiology (AME) analyses population-based cohorts and case studies for specific diseases, using genomics, epigenomics, transcriptomics, proteomics, metabolomics and functional analyses. The aim of this research unit is to decipher the molecular mechanisms of complex diseases like type 2 diabetes or obesity. The unit administers the biological specimen repository of the Department of Epidemiology and stores the samples for national and international projects.

Specialist contact

Dr. Christian Gieger, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Genetic Epidemiology, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49-89-3187-4106

Dr. Christian Gieger | EurekAlert!
Further information:
http://www.helmholtz-muenchen.de

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>