Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lifestyle Influences Metabolism via DNA Methylation

23.09.2013
An unhealthy lifestyle leaves traces in the DNA. These may have specific effects on metabolism, causing organ damage or disease. Scientists of Helmholtz Zentrum München have now identified 28 DNA alterations associated with metabolic traits. This world-first epigenome-wide association study (EWAS) of modified genes and metabolites has been now published in the journal Human Molecular Genetics.

In the course of life, aging processes, environmental influences and lifestyle factors such as smoking or diet induce biochemical alterations to the DNA. Frequently, these lead to DNA methylation, a process in which methyl groups are added to particular DNA segments, without changing the DNA sequence. Such processes can influence gene function and are known as epigenetics. Scientists of the Institute of Genetic Epidemiology (IGE) and the Research Unit Molecular Epidemiology (AME) at Helmholtz Zentrum München are seeking to determine what association exists between these epigenetic processes and the health consequences, in particular for the metabolism.

To this end, the team led by Christian Gieger (IGE) and Melanie Waldenberger (AME), in in collaboration with Karsten Suhre of Weill Cornell Medical College in Qatar analyzed blood samples from more than 1800 participants of the KORA study *. In doing so, they analyzed more than 457,000 loci in the DNA as to biochemical alterations and compared them with the concentrations of 649 different metabolites. The analysis showed that the methylation of 28 DNA segments changed a number of important metabolic processes.

In the relevant DNA regions there were also already known disease-related genes: for example, the TXNIP gene that regulates glucose metabolism and is associated with the development of diabetes mellitus. Appropriately, with the methylated TXNIP there were altered concentrations of metabolites from the lipid and glucose metabolism. Also genes that are known to be biochemically altered due to smoking affect different metabolic activities, and specifically those with corresponding biological functions.

“This study gives us new insights into how lifestyle factors can influence metabolism via the resulting alterations in the DNA,” said Gieger, research group leader at the IGE. “We can now use these results to develop new diagnostic and therapeutic approaches for lifestyle-related diseases such as diabetes.”

Further information

*KORA(Kooperative Gesundheitsforschung in der Region Augsburg)
For more than 20 years, the research platform Cooperative Health Research in the Augsburg Region (KORA) has been collecting and analyzing data on the health of thousands of people living in the Augsburg region. The objective is to elucidate the effects of environmental factors, behavior and genes. KORA focuses on the development and course of chronic diseases, in particular myocardial infarction and diabetes mellitus. Risk factors are analyzed with regard to individual health behavior (e.g. smoking, diet, exercise), environmental factors (e.g. air pollution, noise) and genetics. From the perspective of health care research, questions regarding the utilization of health care resources and the cost of health care are also studied. www.helmholtz-muenchen.de/kora

Original publication:

Petersen, A.-K. et al. (2013). Epigenetics meets metabolomics: An epigenome-wide association study with blood serum metabolic traits, Human Molecular Genetics, doi: 10.1093/hmg/ddt430

Link to publication

As German Research Center for Environmental Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,100 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum München is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 34,000 staff members. www.helmholtz-muenchen.de

Research at the Institute of Genetic Epidemiology (IGE) is concerned with genetic statistics. This encompasses the planning, execution and analysis of gene mapping projects related to complex diseases as well as the development and implementation of new statistical methods. The activities extend to genome-wide association studies and linkage analyses (family studies) of a wide variety of diseases. A focus is on phenotypes that are studied within the framework of the population-based KORA cohort. The aim of the Institute is to contribute to the elucidation of the genetic causes of complex diseases.

TheResearch Unit of Molecular Epidemiology (AME) analyses population-based cohorts and case studies for specific diseases, using genomics, epigenomics, transcriptomics, proteomics, metabolomics and functional analyses. The aim of this research unit is to decipher the molecular mechanisms of complex diseases like type 2 diabetes or obesity. The unit administers the biological specimen repository of the Department of Epidemiology and stores the samples for national and international projects.

Specialist contact

Dr. Christian Gieger, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Genetic Epidemiology, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49-89-3187-4106

Dr. Christian Gieger | EurekAlert!
Further information:
http://www.helmholtz-muenchen.de

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>