Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lifeless cells ensure sharp vision

25.03.2009
Seemingly dead cells perform a surprising task in the lens of a fish eye. Every morning and evening they change the lens's capacity to refract light in order to enhance color perception during the day and night vision when it's dark. This is shown in new research from Lund University in Sweden.

It was previously known that the lens of the eye largely consists of lifeless cells. In these cells, the cell nuclei and other structures have been degraded so that all that remains is a solution of proteins.

This clear fluid enables light to pass through the lens to hit the retina and create an image of what is being seen. This is how the eye functions in humans and other mammals as well.

Now scientists at Lund University have discovered another fascinating dimension of the eye's lens. They have shown that the lens in the blue acara, a common aquarium fish, activates some of its lifeless cells every morning and every evening in order to change the concentration of protein in the cell fluid. The change is hardly measurable, but its effect is of major importance.

"With this strategy, the fish get better color vision during the day and can see better in the dark at night," says Marcus Schartau, a doctoral candidate in Professor Ronald Kröger's research team at the Department of Cell and Organism Biology at Lund University.

It is the amount of protein in the lifeless cells that makes the light refract in the right way. What happens in the morning in the blue acara eye is that the lens adapts the protein concentration so that the lens can focus light of various wave lengths (colors) at one and the same point. The fish can then see sharp color images. This is called making the lens multifocal.

In the evening the protein concentration is restored to the same level as before the morning change. The lens can then only focus a single wavelength on the retina. The eye thereby loses its ability to create sharp color images, but instead utilizes the wavelengths that are most important for night vision. This is referred to as making the lens monofocal.

This strategy, switching between the two lens types every day, is something humans lack. Our monofocal lens is simpler in construction, but thanks to our greater depth of focus, we can still see different colors in daylight.

For more information, please contact Ronald Kröger, phone: +46 46 - 222 05 96 or Ronald.Kroger@cob.lu.se.

Pressofficer: Lena Björk Blixt; Lena.Bjork_Blixt@kanslin.lu.se;+46-46 222 7186

Lena Björk Blixt | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>