Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The life histories of the earliest land animals

22.04.2009
The fossil record usually shows what adult animals looked like. But the appearance and lifestyle of juvenile animals often differ dramatically from those of the adults.

A classic example is provided by frogs and salamanders. New discoveries from Uppsala, Cambridge and Duke Universities, published in Science, show that some of the earliest backboned land animals also underwent such changes of lifestyle as they grew up.

Professor Per Ahlberg at the Department of Physiology and Developmental Biology, Uppsala University, together with Jennifer Clack, Cambridge University, and Viviane Callier, Duke University, have studied fossil upper arm bones from the two so-called "four-legged fishes", Ichthtyostega and Acanthostega, from Greenland. These animals, which lived during the Devonian period about 365 million years ago, were among the earliest vertebrates (backboned animals) with fore- and hindlimbs rather than paired fins. They belong to the common stem group of all living amphibians, reptiles, mammals and birds.

The researchers have identified several half-grown, as well as fully grown, upper arm bones from Ichthyostega and Acanthostega, allowing them to study how the shape of the bone changed during growth. It turns out that the two animals had different life histories.

"The upper arm bone provides a lot of information about the lifestyle of the animal, because its shape gives clues to the pattern of movement and can tell us for example whether the animal lifted the front part of its body clear of the ground," says Per Ahlberg.

Ichthyostega, which has robust limbs and only a small tail fin, appears to be the more terrestrial of the two. Its forelimb becomes better adapted to supporting weight as the animal grows up. The pattern of muscle attachments on the upper arm bone changes from a "fish-like" to a "land animal-like" configuration, and the shape of the shoulder joint changes so that it becomes possible for the animal to "lock" its forelimb into a weight-bearing position.

Acanthostega has feebler limbs and a large tail fin, and seems to have been more aquatic. In this animal, there are no corresponding changes.

"The explanation is probably that both animals laid their eggs in water just like modern amphibians, which meant that the terrestrial Ichthyostega, but not the aquatic Acanthostega, needed to undergo a lifestyle transformation as it grew from larva to adult," says Per Ahlberg.

Per Ahlberg | EurekAlert!
Further information:
http://www.uu.se

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>