Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The life histories of the earliest land animals

22.04.2009
The fossil record usually shows what adult animals looked like. But the appearance and lifestyle of juvenile animals often differ dramatically from those of the adults.

A classic example is provided by frogs and salamanders. New discoveries from Uppsala, Cambridge and Duke Universities, published in Science, show that some of the earliest backboned land animals also underwent such changes of lifestyle as they grew up.

Professor Per Ahlberg at the Department of Physiology and Developmental Biology, Uppsala University, together with Jennifer Clack, Cambridge University, and Viviane Callier, Duke University, have studied fossil upper arm bones from the two so-called "four-legged fishes", Ichthtyostega and Acanthostega, from Greenland. These animals, which lived during the Devonian period about 365 million years ago, were among the earliest vertebrates (backboned animals) with fore- and hindlimbs rather than paired fins. They belong to the common stem group of all living amphibians, reptiles, mammals and birds.

The researchers have identified several half-grown, as well as fully grown, upper arm bones from Ichthyostega and Acanthostega, allowing them to study how the shape of the bone changed during growth. It turns out that the two animals had different life histories.

"The upper arm bone provides a lot of information about the lifestyle of the animal, because its shape gives clues to the pattern of movement and can tell us for example whether the animal lifted the front part of its body clear of the ground," says Per Ahlberg.

Ichthyostega, which has robust limbs and only a small tail fin, appears to be the more terrestrial of the two. Its forelimb becomes better adapted to supporting weight as the animal grows up. The pattern of muscle attachments on the upper arm bone changes from a "fish-like" to a "land animal-like" configuration, and the shape of the shoulder joint changes so that it becomes possible for the animal to "lock" its forelimb into a weight-bearing position.

Acanthostega has feebler limbs and a large tail fin, and seems to have been more aquatic. In this animal, there are no corresponding changes.

"The explanation is probably that both animals laid their eggs in water just like modern amphibians, which meant that the terrestrial Ichthyostega, but not the aquatic Acanthostega, needed to undergo a lifestyle transformation as it grew from larva to adult," says Per Ahlberg.

Per Ahlberg | EurekAlert!
Further information:
http://www.uu.se

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Error-free into the Quantum Computer Age

18.12.2017 | Physics and Astronomy

Disarray in the brain

18.12.2017 | Studies and Analyses

2 million euros in funding for new MR-compatible electrophysiological brain implants

18.12.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>