Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life in a bubble

01.08.2008
Research shows how insects use trapped oxygen to breathe underwater

Hundreds of insect species spend much of their time underwater, where food may be more plentiful. MIT mathematicians have now figured out exactly how those insects breathe underwater.

By virtue of their rough, water-repellent coat, when submerged these insects trap a thin layer of air on their bodies. These bubbles not only serve as a finite oxygen store, but also allow the insects to absorb oxygen from the surrounding water.

"Some insects have adapted to life underwater by using this bubble as an external lung," said John Bush, associate professor of applied mathematics, a co-author of the recent study.

... more about:
»Oxygen »external lung »insect »underwater

Thanks to those air bubbles, insects can stay below the surface indefinitely and dive as deep as about 30 meters, according to the study co-authored by Bush and Morris Flynn, former applied mathematics instructor. Some species, such as Neoplea striola, which are native to New England, hibernate underwater all winter long.

This phenomenon was first observed many years ago, but the MIT researchers are the first to calculate the maximum dive depths and describe how the bubbles stay intact as insects dive deeper underwater, where pressure threatens to burst them.

The new study, which appears in the Aug. 10 issue of the Journal of Fluid Mechanics, shows that there is a delicate balance between the stability of the bubble and the respiratory needs of the insect.

The air bubble's stability is maintained by hairs on the insects' abdomen, which help repel water from the surface. The hairs, along with a waxy surface coating, prevent water from flooding the spiracles—tiny breathing holes on the abdomen.

The spacing of these hairs is critically important: The closer together the hairs, the greater the mechanical stability and the more pressure the bubble can withstand before collapsing.

However, mechanical stability comes at a cost. If the hairs are too close together, there is not enough surface area through which to breathe.

"Because the bubble acts as an external lung, its surface area must be sufficiently large to facilitate the exchange of gases," said Flynn, who is now an assistant professor of mechanical engineering at the University of Alberta.

The researchers developed a mathematical model that takes these factors into account and allows them to predict the range of possible dive depths. They found that there is not only a maximum depth beyond which the bubble collapses, but a minimum depth above which the bubble cannot meet the insect's respiratory needs.

Though the researchers found that the insects can go as deep as 30 meters below the surface, they rarely venture deeper than several meters, due to environmental factors such as amount of sunlight, availability of prey and the presence of predators.

The researchers first took an interest in the external lung phenomenon when they accidentally captured one of the underwater breathers while looking for water striders. A few years ago, Bush and colleagues figured out how the striders use surface tension to glide across the water's surface.

Other researchers have explored systems that could replicate the external lung on a larger scale, for possible use by diving humans. A team at Nottingham Trent University showed that a porous cavity surrounded by water-repellent material is supplied with oxygen by the thin air layer on its surface. The surface area required to support human respiration is impractically large, in excess of 100 square meters; however, other avenues for technological application exist. For example, such a device could supply the oxygen needed by fuel cells to power small autonomous underwater vehicles.

Teresa Herbert | EurekAlert!
Further information:
http://www.mit.edu

Further reports about: Oxygen external lung insect underwater

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>