Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Levitating Crystals

10.09.2013
Magnetic levitation separates crystal polymorphs by their density

The effectiveness of crystalline pharmaceuticals is not only influenced by molecular composition; the structure of the crystals is also important because it determines both the solubility and the rate of dissolution, which in turn affect the bioavailability.

Researchers from Cambridge, Massachusetts (USA) have recently developed a method by which different crystals can be separated by their density in a magnetic field. In the journal Angewandte Chemie, they have now demonstrated the extraordinary efficiency of separation through “magnetic levitation”.

Many organic substances crystallize in multiple crystal structures known as polymorphs. Drugs are not the only class of products for which this can lead to problems. Different crystal structures can lead to color variation in pigments and dyes; in explosives it can lead to changes in sensitivity.

It is not always possible to control the crystallization process to obtain only the desired polymorph. Clean separation is often difficult, and occurs either by chance or through long and complex procedures. A team led by Allan S. Myerson at the Massachusetts Institute of Technology and George M. Whitesides at Harvard University has recently developed a simple method that makes it possible to separate polymorphs conveniently and reliably within minutes through magnetic levitation. The technique is based on the fact that different crystal modifications almost always have different densities.

Their clever method works like this: Two magnets are placed one over the other at 4.5 cm apart with like poles facing. This produces a magnetic field with a linear gradient and a minimum in the middle, between the two magnets. The crystals to be separated are suspended in a solution of paramagnetic ions and placed in a tube within the magnetic field. The gravitational force causes the crystals to sink down to the bottom of the tube.

By doing so, a crystal “displaces” its own volume of the paramagnetic fluid “upwards”. Yet, this is unfavorable, because the paramagnetic fluid is attracted by the magnet — the attraction gets stronger closer to the face of the magnet. The crystal sinks as long as it reaches a distance above the magnet where the gravitational force and the magnetic attraction on the equivalent volume of the paramagnetic fluid are balanced. At this point, the crystal will “float” in the fluid. As the strength of the gravitational force depends on the density of the crystal, the “floating point” is different for different crystal modification. The solution is then removed from the tube with a cannula and divided into multiple fractions.

Through separation of different polymorphs of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophencarbonitrile, sulfathiazole, carbamazepine, and trans-cinnamic acid, the scientists have presented impressive evidence of the efficiency of their new technique, which allows for the separation of crystal forms with a difference in density as low as 0.001 g/cm3.

About the Author
George M. Whitesides is the Woodford L. and Ann A. Flowers University Professor at Harvard University, with a background in chemistry, biochemistry, and materials science. He and his students study subjects ranging from “diagnostics for the developing world” to “the origin of life”, and magnetic levitation and the measurement of density is one part of a program designed to develop new tools for medicinal chemistry, and for molecular and cellular biology.
Author: George M. Whitesides, Harvard University, Cambridge (USA), http://gmwgroup.harvard.edu/content.php?page=contact
Title: Using Magnetic Levitation to Separate Mixtures of Crystal Polymorphs
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201305549

George M. Whitesides | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>