Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In leukemia, discovery of Mer protein in cancer cells’ nuclei offers another place to target this known cause of cancer

14.03.2012
Since the mid-1990s, doctors have had the protein Mer in their sights – it coats the outside of cancer cells, transmitting signals inside the cells that aid their uncontrolled growth.
A University of Colorado Cancer Center study, recently published in the journal PLoS ONE, found another home for Mer – inside cancer cells’ nuclei – and perhaps another role for this protein that can point the way to novel, targeted treatments.

“We’ve known that leukemic B and T cells have a lot of Mer on their surface, while normal lymphocytes have none, and that this protein promotes cancer cell survival,” says Justine Migdall, MD/PhD candidate working in the lab of Douglas Graham, MD, PhD, CU Cancer Center investigator and associate professor of pediatrics and immunology at the University of Colorado School of Medicine.

“But signaling from the cell surface may only be part of how Mer promotes leukemia. Our recent finding that Mer also resides in the nucleus suggests there may be additional ways that Mer is promoting cancer from within the cell,” he says.

The question remains, What is Mer doing in the nucleus?

Migdall and Graham think it’s likely that Mer in the nucleus may influence “gene expression” – helping to decide which parts of the cells’ DNA are printed or expressed into proteins. If Mer is, in fact, altering genes within cells, it may be one way in which healthy cells become cancerous – with the wrong genes expressed, a good cell may go bad. Or perhaps Mer in the nucleus may help existing cancer cells survive and thrive despite chemotherapy treatment, as is commonly the case in patients who relapse.
“This finding is especially exciting within the realm of drug development, which is currently focused on inhibiting Mer signaling,” Migdall says. “Mer in the nucleus may offer another explanation of how Mer promotes cancer and thus may prove to be another druggable target.”

A second use of this discovery may be in prognosis – Migdall and Graham hope to discover if the presence of MER in the nuclei of leukemia cells predicts a more aggressive form of the disease. The answer may help doctors deliver more accurate information as well as accurate treatments.

“If we truly have two distinct mechanisms through which Mer acts – cancer cell signaling and regulation of gene expression within the nucleus – then we would have additional ways to target this cancer-causing agent,” Graham says.

This work was supported by NIH Grant 1R01CA137078 and ACS Grant RSG-08-291-01-LIB to Douglas Graham.

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu

Further reports about: Cancer Colorado river cancer cells healthy cell

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>