Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Let there be light: Chemists develop magnetically responsive liquid crystals

27.06.2014

UC Riverside discovery has applications in signage, posters, writing tablets, billboards and anti-counterfeit technology

Chemists at the University of California, Riverside have constructed liquid crystals with optical properties that can be instantly and reversibly controlled by an external magnetic field. The research paves the way for novel display applications relying on the instantaneous and contactless nature of magnetic manipulation-such as signage, posters, writing tablets, and billboards.

Magnetically Actuated Liquid Crystals

Top: Scheme showing magnetic control over light transmittance in the novel liquid crystals. B is the alternating magnetic field. The polarized light is seen in yellow. The gray rods represent the polarizers. The magnetic field controls the orientation of the nanorods (seen in orange), which in turn affects the polarization of the light and, then, the amount of light that can pass through the polarizers. Bottom: Images show how a polarization-modulated pattern changes darkness/brightness by rotating the direction of the cross polarizers. The circles and background contain magnetic nanorods aligned at different orientations. Research by the Yin Lab at UC Riverside shows that by combining magnetic alignment and lithography processes, it is possible to create patterns of different polarizations in a thin composite film and control over the transmittance of light in particular areas.

Credit: Yin Lab, UC Riverside.

Commercially available liquid crystals, used in modern electronic displays, are composed of rod-like or plate-like molecules. When an electric field is applied, the molecules rotate and align themselves along the field direction, resulting in a rapid tuning of transmitted light.

"The liquid crystals we developed are essentially a liquid dispersion, a simple aqueous dispersion of magnetic nanorods," said Yadong Yin, an associate professor of chemistry, who led the research project. "We use magnetic nanorods in place of the commercial nonmagnetic rod-like molecules. Optically these magnetic rods work in a similar way to commercial rod-like molecules, with the added advantage of being able to respond rapidly to external magnetic fields."

... more about:
»UCR »crystals »magnetically »orientation »synthesis

Yin explained that upon the application of a magnetic field, the nanorods spontaneously rotate and realign themselves parallel to the field direction, and influence the transmittance of polarized light.

Study results appear online in Nano Letters. How light passing through the magnetic liquid crystal is controlled simply by altering the direction of an external magnetic field can be seen here and here.

The magnetically actuated liquid crystals developed by the Yin Lab have several unique advantages. First, they can be operated remotely by an external magnetic field, with no electrodes needed. (Electrical switching of commercial liquid crystals requires transparent electrodes which are very expensive to make.) Second, the nanorods are much larger than the molecules used in commercial liquid crystals. As a result, their orientation can be conveniently fixed by solidifying the dispersing matrix.

Further, the magnetic nanorods can be used to produce thin-film liquid crystals, the orientation of which can be fixed entirely or in just selected areas by combining magnetic alignment and lithographic processes. This allows patterns of different polarizations to be created as well as control over the transmittance of polarized light in select areas.

"Such a thin film does not display visual information under normal light, but shows high contrast patterns under polarized light, making it immediately very useful for anti-counterfeit applications," Yin said. "This is not possible with commercial liquid crystals. In addition, the materials involved in our magnetic liquid crystals are made of iron oxide and silica, which are much cheaper and more eco-friendly than the commercial organic molecules-based liquid crystals."

The liquid crystals may also find applications as optical modulators— optical communication devices for controlling the amplitude, phase, polarization, propagation direction of light.

The discovery came about when Yin's lab first had the idea of using magnetic nanorods to replace rod-shaped molecules in commercial systems to produce liquid crystals that can be magnetically controlled. After looking into the literature, the research team realized that the main challenge in producing practically useful magnetic liquid crystals was in the synthesis of magnetic nanorods.

"Prior attempts had been limited to materials with very limited magnetic responses," Yin said. "We utilized our expertise in colloidal nanostructure synthesis to produce magnetite nanorods that can form liquid crystals and respond strongly to even very weak magnetic fields – even a fridge magnet can operate our liquid crystals."

###

The research was supported by grants to Yin by the National Science Foundation and the U.S. Army Research Laboratory.

Yin was joined in the research by Mingsheng Wang and Le He at UCR; and Serkan Zorba at Whittier College, Calif.

The UCR Office of Technology Commercialization has filed a patent on the technology reported in the research paper.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | Eurek Alert!

Further reports about: UCR crystals magnetically orientation synthesis

More articles from Life Sciences:

nachricht No chance for house dust mites
06.05.2015 | Hohenstein Institute

nachricht Expedition Genomics Lab: the mobile revolution in genetic analysis
06.05.2015 | MUSE Museo delle Scienze

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spray drying the precision particle under the virtual magnifying glass

Spray drying is a common manufacturing process, used in the production of ceramic granulate for technical components or dental prostheses as well as dissolvable medicinal substances, food additives and in the processing of milk into powder. Using computer simulation methodology developed by scientists at the Fraunhofer Institute for Mechanics of Materials IWM, a more comprehensible understanding can now be gained of the behavior of particles in solvent during the spray drying process. This allows powder and granulate manufacturers to specifically adjust the properties of their products while reducing waste.

Previously, it was unusual for granule and powder producers to use granulation simulations to improve their products. For new product development or process...

Im Focus: The random raman laser: A new light source for the microcosmos

Texas A&M University researchers demonstrate how a narrow-band strobe light source for speckle-free imaging has the potential to reveal microscopic forms of life

In modern microscope imaging techniques, lasers are used as light sources because they can deliver fast pulsed and extremely high-intensity radiation to a...

Im Focus: Pulsar with widest orbit ever detected

Discovered by high school research team

A team of highly determined high school students discovered a never-before-seen pulsar by painstakingly analyzing data from the National Science Foundation's...

Im Focus: Erosion, landslides and monsoon across the Himalaya

Scientists from Nepal, Switzerland and Germany was now able to show how erosion processes caused by the monsoon are mirrored in the sediment load of a river crossing the Himalaya.

In these days, it was again tragically demonstrated that the Himalayas are one of the most active geodynamic regions of the world. Landslides belong to the...

Im Focus: Through the galaxy by taxi - The Dream Chaser Space Utility Vehicle

A world-class prime systems integrator and electronic systems provider known for its rapid, innovative, and agile technology solutions, Sierra Nevada Corporation (SNC) is currently developing a new space transportation system called the Dream Chaser.

The ultimate aim is to construct a multi-mission-capable space utility vehicle, while accelerating the overall development process for this critical capability...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Green Summit 2015: the summit of the essential

05.05.2015 | Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

 
Latest News

Expedition Genomics Lab: the mobile revolution in genetic analysis

06.05.2015 | Life Sciences

How noise changes the way the brain gets information

06.05.2015 | Life Sciences

A model approach for sustainable phosphorus recovery from wastewater

06.05.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>