Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lessons From the Worm: How the Elderly Can Live an Active Life

04.09.2013
When the tiny roundworm C. elegans reaches middle age—at about 2 weeks old—it can't quite move like it did in the bloom of youth.

But rather than imposing an exercise regimen to rebuild the worm's body-wall muscles, researchers can bring the wriggle back by stimulating the animal's neurons. And, they say, pharmaceuticals might have a similar effect in mammals.

Scientists at the University of Michigan's Life Sciences Institute and Medical School have found that the loss of motor ability associated with aging begins in neurons and spreads to muscles, and that chemically stimulating neurons could "rejuvenate" old roundworms by improving the animals' motor function.

Researchers in the lab of Shawn Xu, the Bernard W. Agranoff Collegiate Professor in the Life Sciences Institute and Department of Molecular and Integrative Physiology, in collaboration with Ao-Lin Hsu in the Department of Internal Medicine at the Medical School, determined that the motor decline in older worms had roots in early changes in the function of the nervous system that began long before visible deterioration in the structure of the animals' tissues. They were able to reverse the decline in motor ability by giving the worms arecoline, an alkaloid found in the areca nut.

In parts of India and Southeast Asia, where the areca palm grows, people chew the nut as a stimulant, often combined with betel leaf and other ingredients. However, the practice is associated with cancer.

"The pharmacological stimulation of neurons with the chemical improved motor functions in old animals," Xu said. "Understanding the neuron-to-muscle sequence can help find treatments for motor decline in humans. It would be ridiculous to chew areca nuts in hopes of rejuvenating muscle, of course, but the findings suggest that there's potential to develop a drug that works in a similar way for humans."

The research is scheduled for online publication Sept. 3 in Cell Metabolism.

Aging is characterized by gradual, progressive declines in performance of multiple tissues, called functional aging, which ultimately lead to death. While much research has illuminated how genes and the environment affect life span, the mechanisms underlying functional aging in tissues throughout the body have been largely elusive, Xu said.

To understand the role of tissue deterioration in motor-function decline in aging animals, Xu's lab, in collaboration with Hsu, evaluated the functional status of neurons and muscles in the roundworm C. elegans throughout the worms' lifespan, which is about three weeks.

Like other animals, aging C. elegans worms exhibit a decline in motor activity, and old worms are less active than young ones. Was this because of decline in motor neurons controlling muscles in the worms, or because the muscles themselves were weaker?

The researchers in Xu's lab, working with Hsu, outlined a sequence of changes related to the worms' deteriorating ability to move as they grew older. First, relatively early in a nematode's life, the function of motor neurons begins to decline. Later, in nematode middle age the worm's body-wall muscles, which are controlled by the weakened neurons, begin to lose function. Stimulating the neurons with arecoline restored the muscles' function.

"Pharmacological stimulation of the aging nervous system can improve motor functions in aged animals—maybe even mammals," Xu said. "Our studies not only illustrate an example of how functional aging may occur in a genetic model organism, but also provide insights into how genetic and pharmacological interventions may help slow down the rate of such functional aging."

Xu is a faculty member in the Life Sciences Institute, where his laboratory is located and all of his research is conducted. He is also an associate professor in the Department of Molecular and Integrative Physiology at the Medical School.

Other authors on the paper are Ao-Lin Hsu of the U-M Department of Molecular and Integrative Physiology and Department of Internal Medicine and Division of Geriatric and Palliative Medicine; Jie Liu of the U-M Life Sciences Institute; Bi Zhang, Haoyun Lei and Jianfeng Liu of the College of Life Science and Technology at Huazhong University of Science and Technology in Wuhan, China; and Zhaoyang Feng of the Department of Pharmacology at Case Western Reserve University;

This work was supported by the Ministry of Science and Technology of China, the Program of Introducing Talents of Discipline to the Universities from the Ministry of Education, the National Institute on Aging, the National Institute of General Medical Sciences and the Pew Scholar Program.

Shawn Xu: www.lsi.umich.edu/labs/shawn-xu-lab

Life Sciences Institute: www.lsi.umich.edu

Laura J. Williams | Newswise
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>