Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Less effective DNA repair process takes over as mice age


Process may explain why damaged DNA contributes to cancer and other age-related illnesses

As we and other vertebrates age, our DNA accumulates mutations and becomes rearranged, which may result in a variety of age-related illnesses, including cancers.

Biologists Vera Gorbunova and Andei Seluanov have now discovered one reason for the increasing DNA damage: the primary repair process begins to fail with increasing age and is replaced by one that is less accurate.

The findings have been published in the journal PLOS Genetics.

... more about:
»DNA »GFP »Genetics »X-rays »damage »mechanism »medicines »observations »protein

"Scientists have had limited tools to accurately study how DNA repair changes with age," said Gorbunova. "We are now able to measure the efficiency with which cells in mice of different ages repair DNA breaks at the same place in the chromosome."

Gorbunova explained that when mice are young, the breaks in DNA strands are repaired through a process called non-homologous end joining (NHEJ), in which the damage is repaired by gluing the DNA together with no or very little overlap.

However, Gorbunova and Seluanov found that NHEJ began to fail as the mice got older, allowing a less reliable DNA repair process—microhomology-mediated end joining (MMEJ)—to take over. With MMEJ repairs, broken ends are glued together by overlapping similar sequences that are found within the broken DNA ends. This process leads to loss of DNA segments and the wrong pieces being stitched together.

Gorbunova and her team were able to make their observations by working with genetically-modified mice whose cells produce green fluorescent protein (GFP) that glows each time the breaks are repaired. By tracking how many cells glowed green in different tissues, the researchers determined the efficiency of repair.

"We showed two things with these genetically-modified mice," said Gorbunova. "Not only did the efficiency of DNA repair decline with age, but the mice began using a sloppier repair mechanism, leading to more mutations, particularly in the heart and lungs."

DNA breaks occur frequently because animal cells are under constant assault from routine activities in the environment—whether by a blast of X-rays from a visit to the doctor or simply breathing in oxygen—and, as a result, the DNA molecules often get damaged.

Using the genetically modified mice, the research team can now look at how diet, medicines, and different genetic factors also affect DNA repair in mice.

"These mice may very well help us devise novel ways to prevent some of the illnesses associated with aging," said Gorbunova.

Peter Iglinski | Eurek Alert!
Further information:

Further reports about: DNA GFP Genetics X-rays damage mechanism medicines observations protein

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>