Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Less effective DNA repair process takes over as mice age

10.09.2014

Process may explain why damaged DNA contributes to cancer and other age-related illnesses

As we and other vertebrates age, our DNA accumulates mutations and becomes rearranged, which may result in a variety of age-related illnesses, including cancers.

Biologists Vera Gorbunova and Andei Seluanov have now discovered one reason for the increasing DNA damage: the primary repair process begins to fail with increasing age and is replaced by one that is less accurate.

The findings have been published in the journal PLOS Genetics.

... more about:
»DNA »GFP »Genetics »X-rays »damage »mechanism »medicines »observations »protein

"Scientists have had limited tools to accurately study how DNA repair changes with age," said Gorbunova. "We are now able to measure the efficiency with which cells in mice of different ages repair DNA breaks at the same place in the chromosome."

Gorbunova explained that when mice are young, the breaks in DNA strands are repaired through a process called non-homologous end joining (NHEJ), in which the damage is repaired by gluing the DNA together with no or very little overlap.

However, Gorbunova and Seluanov found that NHEJ began to fail as the mice got older, allowing a less reliable DNA repair process—microhomology-mediated end joining (MMEJ)—to take over. With MMEJ repairs, broken ends are glued together by overlapping similar sequences that are found within the broken DNA ends. This process leads to loss of DNA segments and the wrong pieces being stitched together.

Gorbunova and her team were able to make their observations by working with genetically-modified mice whose cells produce green fluorescent protein (GFP) that glows each time the breaks are repaired. By tracking how many cells glowed green in different tissues, the researchers determined the efficiency of repair.

"We showed two things with these genetically-modified mice," said Gorbunova. "Not only did the efficiency of DNA repair decline with age, but the mice began using a sloppier repair mechanism, leading to more mutations, particularly in the heart and lungs."

DNA breaks occur frequently because animal cells are under constant assault from routine activities in the environment—whether by a blast of X-rays from a visit to the doctor or simply breathing in oxygen—and, as a result, the DNA molecules often get damaged.

Using the genetically modified mice, the research team can now look at how diet, medicines, and different genetic factors also affect DNA repair in mice.

"These mice may very well help us devise novel ways to prevent some of the illnesses associated with aging," said Gorbunova.

Peter Iglinski | Eurek Alert!
Further information:
http://www.rochester.edu

Further reports about: DNA GFP Genetics X-rays damage mechanism medicines observations protein

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>