Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lengthening time a drug remains bound to a target may lead to improving diagnostics, therapy

26.04.2010
Studies led by Stony Brook University professor of chemistry Peter J. Tonge indicate that modifications that enhance the time a drug remains bound to its target, or residence time, may lead to better diagnostic and therapeutic agents.

Tonge will present these results at the American Society for Biochemistry and Molecular Biology's annual meeting in a talk titled "Slow Onset Inhibitors of Bacterial Fatty Acid Biosynthesis: Residence Time, In Vivo Activity and In Vivo Imaging." The talk will be held in Anaheim Convention Center Room 304C, on Sunday April 25 at 9:55 am PST.

"Our research team believes that many drugs are effective because they have long residence times on their target," says Tonge, Director of Infectious Disease Research at the Institute for Chemical Biology & Drug Discovery. "This concept has largely been ignored by investigators, and residence time is not usually incorporated into the drug discovery process."

Tonge explains that most drug discovery efforts obtain only data on the thermodynamic affinity of the drug for its target, measurements that are made at constant drug concentration. However, the Stony Brook University-led research factors in residence time, which he emphasizes is critical for activity in vivo where drug concentrations fluctuate with time.

"The central component of our work is that the length of time a drug remains bound to a target is very important for the activity of the compound in vivo," he adds.

Tonge, together with collaborators at Colorado State University and the University of Würzburg in Germany, have developed a series of compounds that inhibit an enzyme target from Francisella tularensis, where the in vivo antibacterial activity of the compounds correlates with their residence time on the target and not with their thermodynamic affinity for the target. This resulted in a direct correlation between residence time and in vivo activity against an infectious agent.

The research team has also developed a long residence time inhibitor of an enzyme drug target in Mycobacterium tuberculosis and demonstrated that this compound has antibacterial activity in an animal model of tuberculosis.

Because compounds with long residence times should accumulate in bacteria, Tonge explains that the research may lead to the development of agents to image bacterial populations in vivo using positron emission tomography. He says that researchers could then further the concept and develop a method for non-invasive imaging of bacterial populations in humans for both diagnostic purposes and also to monitor bacterial load during drug therapy, thereby helping to chart a drug's effectiveness against bacterial infection.

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>