Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lengthening time a drug remains bound to a target may lead to improving diagnostics, therapy

26.04.2010
Studies led by Stony Brook University professor of chemistry Peter J. Tonge indicate that modifications that enhance the time a drug remains bound to its target, or residence time, may lead to better diagnostic and therapeutic agents.

Tonge will present these results at the American Society for Biochemistry and Molecular Biology's annual meeting in a talk titled "Slow Onset Inhibitors of Bacterial Fatty Acid Biosynthesis: Residence Time, In Vivo Activity and In Vivo Imaging." The talk will be held in Anaheim Convention Center Room 304C, on Sunday April 25 at 9:55 am PST.

"Our research team believes that many drugs are effective because they have long residence times on their target," says Tonge, Director of Infectious Disease Research at the Institute for Chemical Biology & Drug Discovery. "This concept has largely been ignored by investigators, and residence time is not usually incorporated into the drug discovery process."

Tonge explains that most drug discovery efforts obtain only data on the thermodynamic affinity of the drug for its target, measurements that are made at constant drug concentration. However, the Stony Brook University-led research factors in residence time, which he emphasizes is critical for activity in vivo where drug concentrations fluctuate with time.

"The central component of our work is that the length of time a drug remains bound to a target is very important for the activity of the compound in vivo," he adds.

Tonge, together with collaborators at Colorado State University and the University of Würzburg in Germany, have developed a series of compounds that inhibit an enzyme target from Francisella tularensis, where the in vivo antibacterial activity of the compounds correlates with their residence time on the target and not with their thermodynamic affinity for the target. This resulted in a direct correlation between residence time and in vivo activity against an infectious agent.

The research team has also developed a long residence time inhibitor of an enzyme drug target in Mycobacterium tuberculosis and demonstrated that this compound has antibacterial activity in an animal model of tuberculosis.

Because compounds with long residence times should accumulate in bacteria, Tonge explains that the research may lead to the development of agents to image bacterial populations in vivo using positron emission tomography. He says that researchers could then further the concept and develop a method for non-invasive imaging of bacterial populations in humans for both diagnostic purposes and also to monitor bacterial load during drug therapy, thereby helping to chart a drug's effectiveness against bacterial infection.

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>