Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lemur lovers sync their scents

31.01.2014
The strength of a lemur couple's bond is reflected by the similarity of their scents, finds a new study.

"It's like singing a duet, but with smells instead of sounds," said Christine Drea, a Duke University professor who supervised the study.

Duke researchers sampled and analyzed scent secretions produced by lemurs known as Coquerel's sifakas living at the Duke Lemur Center in Durham, NC. The researchers also monitored the animals' scent-marking and sniffing behavior across the breeding season.

They found that lemur lovers mirror each other's scent-marking behavior, and that lemur couples with kids give off similar scents -- possibly as a way to combine territory defenses or to advertise their relationship status to the rest of their group, the researchers say.

The lemurs spend the most time scent-marking and investigating each other's odors before they have kids. After they reproduce, they smell more like each other.

The findings appear in the February 2014 edition of Animal Behaviour.

Coquerel's sifakas are white-furred lemurs with chocolate-brown patches on their chests, arms and legs. They have glands on their throats and genital areas that produce a sticky goo that is dabbed on branches and tree trunks as the animals move through the forest.

To collect the data, the researchers used cotton swabs to sample scent secretions from the genital regions of eight males and seven females across different phases of the reproductive season.

Gas chromatography and mass spectrometry tests to identify the chemical ingredients in each animal's unique aroma showed that sifaka scent secretions from the genital area alone contain more than 250 odor compounds.

The researchers also followed the behavior of six pairs of potential mates, measuring how often the animals smeared their scents on their surroundings -- a behavior known as scent-marking -- as well as how often they sniffed, licked, or marked over the scents left by other members of their group.

The animals mirrored the scent-marking behavior of their partners. "When one member of a pair started sniffing and scent-marking more often, their mate did too," said Lydia Greene, a research associate in the Department of Evolutionary Anthropology who conducted the study as a Duke undergraduate.

The couples without offspring that spend more time on scent-marking and investigating each other's odors may be in a 'getting-to-know-you' period, the researchers say.

"If two animals have never reproduced, the male doesn't necessarily know what the female smells like when she's in heat, because they've never gone through this before. They might need to scent mark a lot more to figure out when it's time to mate," Greene said.

Sifaka couples with kids spent less time scent-marking and investigating each other's odors, but their odor profiles were more similar than those of couples without kids, possibly due to the exchange of odor-producing bacteria during mating, grooming, or other forms of physical contact.

Surprisingly, the number of years a couple had lived together made no difference to their mating success or the similarity of their scents. "Some of the sifaka couples had been living together for quite a while, but hadn't managed to produce an infant, whereas others had been living together for a really short period of time and had already successfully reproduced," Greene said.

Figuring out what the sifakas' chemical messages mean will take more time. The scent secretions of other lemur species contain hundreds of odor compounds that help the animals distinguish males from females, mark the boundaries of their territories, even tell when a female is fertile or sniff out the best mates. By sharing similar scent signals, sifaka couples could be jointly defending their territories, or advertising their bond to other lemurs in the group.

"It could be a signal that they're a united front," Drea said.

"[They could be saying] we're a thing. We've bonded. Don't mess with us," Greene added.

This work was supported by Molly H. Glander Memorial Undergraduate Research Grants, Duke University Undergraduate Research Support grants, and by the U.S. National Science Foundation.

CITATION: "Love is in the air: sociality and pair bondedness influence sifaka reproductive signaling," Greene, L. and C. Drea. Animal Behaviour, February 2014. http://dx.doi.org/10.1016/j.anbehav.2013.11.019

Robin Ann Smith | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: Animal Coquerel's sifakas lemur undergraduate

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>