Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leicester researchers discover a potential molecular defence against Huntington's disease

26.08.2013
University of Leicester experts discover glutathione peroxidase activity improves symptoms in models of the neurodegenerative disorder

Leicester geneticists have discovered a potential defence against Huntington's disease – a fatal neurodegenerative disorder which currently has no cure.

The team of University of Leicester researchers identified that glutathione peroxidase activity – a key antioxidant in cells – protects against symptoms of the disease in model organisms.

They hope that the enzyme activity – whose protective ability was initially observed in model organisms such as yeast - can be further developed and eventually used to treat people with the genetically-inherited disease.

The disease affects around 12 people per 100,000.

Their paper, Glutathione peroxidase activity is neuroprotective in models of Huntington's disease, was published in Nature Genetics on 25 August.

A team of experts from the University's Department of Genetics carried out research for more than six years to identify new potential drug targets for the disease.

They used model systems, such as baker's yeast, fruit flies, and cultured mammalian cells to help uncover potential mechanisms underlying disease at the cellular level.

They initially screened a genome-wide collection of yeast genes and found several candidates which protected against Huntington's related symptoms in yeast. They then validated their findings in fruit flies and mammalian cells.

They found that glutathione peroxidase activity is robustly protective in these models of Huntington's disease.

Importantly, there are drug-like compounds available that mimic this activity that have already been tested in human clinical trials for other disorders – which potentially means the approach could be used to treat people with the disease.

The team now aim to further validate the observations regarding glutathione peroxidase activity, in order to understand whether this could have therapeutic relevance for Huntington's.

In addition, they have identified many additional genes that are protective - and aim to further explore these to see if there are any additional therapeutic possibilities suggested by their research.

Dr Flaviano Giorgini, Reader in Neurogenetics of the University's Department of Genetics and senior author of the paper, said: "We are taking advantage of genetic approaches in simple model organisms in order to better understand Huntington's disease, with the aim of uncovering novel ways to treat this devastating disorder.

"It appears that glutathione peroxidase activity is a robustly protective antioxidant approach which may have relevance for Huntington's disease."

Dr Robert Mason, Research Associate in the Department of Genetics, and first author of the study, said: "In addition to glutathione peroxidase, this study has identified many genes that improve Huntington's 'symptoms' in yeast. These genes provide valuable information on the underlying mechanisms leading to Huntington's, and further study will likely uncover additional approaches that could be beneficial in treating this terrible disease."

Dr Giorgini stated: "We are excited by the work because it uncovers a potential new route for therapeutics in Huntington's disease. I am also proud that all of this work has been conducted at the Department of Genetics at the University of Leicester."

The study was performed in collaboration with Prof Charalambos Kyriacou, also of the Department of Genetics at Leicester. Massimiliano Casu, Nicola Butler, Dr Carlo Breda, Dr Susanna Campesan, Dr Jannine Clapp, Dr Edward Green and Devyani Dhulkhed also contributed to the research study.

The research was primarily funded by CHDI Foundation and the Huntington's Disease Association.

Dr. Flaviano Giorgini | EurekAlert!
Further information:
http://www.le.ac.uk

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>