Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Learning with all the senses


Movements and images facilitate vocabulary learning

“Atesi” - what sounds like a word from the Elven language of Lord of the Rings is actually a Vimmish word meaning "thought". Scientists from the Max Planck Institute for Human Cognitive and Brain Sciences in Leipzig have used Vimmish, an artificial language specifically developed for scientific research, to study how people can best memorise foreign-language terms. According to the researchers, it is easier to learn vocabulary if the brain can link a given word with different sensory perceptions.

A picture facilitates learning: our brain remembers the words "bicycle" and "thought" in a foreign language more easily if it is also confronted with corresponding images.

© MPI f. Human Cognitive and Brain Sciences/ v. Kriegstein

The motor system in the brain appears to be especially important: When someone not only hears vocabulary in a foreign language, but expresses it using gestures, they will be more likely to remember it. Also helpful, although to a slightly lesser extent, is learning with images that correspond to the word. Learning methods that involve several senses, and in particular those that use gestures, are therefore superior to those based only on listening or reading.

For most students, the very thought of learning new vocabulary evokes a groan. Rote learning of long lists of words must surely be one of the most unpopular types of schoolwork. That said, many schools and language courses have now understood that learning outcomes improve if vocabulary, for example, is presented not just as a word, but also as an image. The multisensory learning theory states that the brain learns more easily when several senses are stimulated in parallel.

The results obtained by the Leipzig-based researchers confirm this. For their study the scientists used Vimmish, an artificial language they developed themselves, which follows similar phonetic rules to Italian. This ensured that the vocabulary was equally new to all participants. Over the course of a week, young women and men were to memorise the meaning of abstract and concrete Vimmi-nouns under different conditions. In the first experiment, the subjects heard the word and then observed a corresponding image or a gesture. In the second experiment, they symbolically drew the corresponding word in the air or expressed it with a gesture. The researchers then checked whether the participants could still recall the term at different times after the learning period.

"The subjects' recollection was best in relation to terms they themselves had expressed using gestures. When they heard the term and its translation and also observed a corresponding image, they were also better able to remember the translation. By contrast, however, tracing a term or observing a gesture was no better than just hearing the term", explains Katja Mayer of the Max Planck Institute for Human Cognitive and Brain Sciences. The way a term was learned was even reflected in the subjects' brain activity. In this way, areas of the brain responsible for the motor system were active when a subject translated a term previously learned through gesture, while areas of the visual system were active in the case of words learned with the help of images.

This suggests that the brain learns foreign words more easily when they are associated with information from different sensory organs. It may be that these associations are mutually reinforcing, imprinting the source-language term and its translation more deeply in the mind. "If for example we follow a new term with a gesture, we create additional input that facilitates the brain's learning", says Katharina von Kriegstein, head of the study at the Max Planck Institute for Human Cognitive and Brain Sciences. The scientists now want to discover whether the activity in the motor and visual centres is actually the cause of the improved learning outcomes. They plan to do this by activating the neurons in these regions using electrodes and measuring the impact on learning outcomes.

It is not only in learning vocabulary that the multisensory principle applies; other studies have shown that multisensory input also facilitates word recognition in the subject's own language. "If we're on the phone with someone we know, for example, the areas of the brain responsible for facial recognition are active during the phone call. It seems that the brain simulates the information not being captured by the eyes and creates it for itself", explains von Kriegstein.

Thus, we learn with all our senses. Taste and smell also have a role in learning, and feelings play an important part too. But does multisensory learning work according to the principle: the more senses, the better? "That could well be so," says von Kriegstein, "but we don't know how much the learning outcomes improve with the addition of more senses. Ideally, however, the individual sensory impressions should match one another. In other words, to learn the Spanish word for apple, the subject should make an apple gesture, taste an apple or look at a picture of an apple."


Dr. Katharina von Kriegstein
Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig
Phone: +49 341 9940-2476
Katja Paasche
Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig
Phone: +49 341 9940-2404
Fax: +49 341 9940-113

Original publication
Katja M. Mayer, Izzet B. Yildiz, Manuela Macedonia, Katharina von Kriegstein

Visual and motor cortices differentially support the translation of foreign language words

Current Biology, 5 February 2015

Dr. Katharina von Kriegstein | Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>