Learning from locusts

A similarity in brain disturbance between insects and people suffering from migraines, stroke and epilepsy points the way toward new drug therapies to address these conditions.

Queen's University biologists studying the locust have found that these human disorders are linked by a brain disturbance during which nerve cells shut down. This also occurs in locusts when they go into a coma after exposure to extreme conditions such as high temperatures or lack of oxygen.

The Queen's study shows that the ability of the insects to resist entering the coma, and the speed of their recovery, can be manipulated using drugs that target one of the cellular signaling pathways in the brain.

“This suggests that similar treatments in humans might be able to modify the thresholds or severity of migraine and stroke,” says Gary Armstrong, who is completing his PhD research in Biology professor Mel Robertson's laboratory. “What particularly excites me is that in one of our locust models, inhibition of the targeted pathway completely suppresses the brain disturbance in 70 per cent of animals,” adds Dr. Robertson.

The Queen's research team previously demonstrated that locusts go into a coma as a way of shutting down and conserving energy when conditions are dangerous. The cellular responses in the locust are similar to the response of brain cells at the onset of a migraine.

Noting that it's hard to drown an insect – due to their ability to remain safely in a coma under water for several hours – Mr. Armstrong says, “It's intriguing that human neural problems may share their mechanistic roots with the process insects use to survive flash floods.”

The Queen's study is published in the current edition of the Journal of Neuroscience. Other researchers on the team are Corinne Rodgers and Tomas Money who are also in Dr. Robertson's laboratory. The research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

PLEASE NOTE: A PDF copy of the study is available upon request, as well as high-resolution JPEG images of the locusts. Videos showing induced comas from low oxygen and simulated flash floods can be found at this link: https://qshare.queensu.ca/Users01/9ga1/www/index2.html

Contacts:

Stephanie Earp, 613.533.6000 ext. 79173 stephanie.earp@queensu.ca or

Nancy Dorrance, 613.533.2869 nancy.dorrance@queensu.ca, Queen's News and Media Services

Attention broadcasters: Queen's has facilities to provide broadcast quality audio and video feeds. For television interviews, we can provide a live, real-time double ender from Kingston via fibre optic cable. Please call for details.

Queen's biologists are learning from locusts how the human brain may be manipulated to alleviate disease.

Media Contact

Nancy Dorrance EurekAlert!

More Information:

http://www.queensu.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors