Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning 1 of cancer's tricks

24.08.2012
Caltech chemists determine 1 way tumors meet their growing needs

Behaving something like ravenous monsters, tumors need plentiful supplies of cellular building blocks such as amino acids and nucleotides in order to keep growing at a rapid pace and survive under harsh conditions.


A computational model depicts a PFK1 enzyme with the sugar GlcNAc attached (left). Comparing this model to that showing PFK1 complexed to a molecule that activates the enzyme (right) suggests how addition of GlcNAc may inhibit enzymatic activity.

Credit: Caltech/Yi et al.

How such tumors meet these burgeoning demands has not been fully understood. Now chemists at the California Institute of Technology (Caltech) have shown for the first time that a specific sugar, known as GlcNAc ("glick-nack"), plays a key role in keeping the cancerous monsters "fed." The finding suggests new potential targets for therapeutic intervention.

The new results appear in this week's issue of the journal Science.

The research team—led by Linda Hsieh-Wilson, professor of chemistry at Caltech—found that tumor cells alter glycosylation, the addition of carbohydrates (in this case GlcNAc) to their proteins, in response to their surroundings. This ultimately helps the cancerous cells survive. When the scientists blocked the addition of GlcNAc to a particular protein in mice, tumor-cell growth was impaired.

The researchers used chemical tools and molecular modeling techniques developed in their laboratory to determine that GlcNAc inhibits a step in glycolysis (not to be confused with glycosylation), a metabolic pathway that involves 10 enzyme-driven steps. In normal cells, glycolysis is a central process that produces high-energy compounds that the cell needs to do work. But Hsieh-Wilson's team found that when GlcNAc attaches to the enzyme phosphofructokinase 1 (PFK1), it suppresses glycolysis at an early phase and reroutes the products of previous steps into a different pathway—one that yields the nucleotides a tumor needs to grow, as well as molecules that protect tumor cells. So GlcNAc causes tumor cells to make a trade—they produce fewer high-energy compounds in order to get the products they need to grow and survive.

"We have identified a novel molecular mechanism that cancer cells have co-opted in order to produce intermediates that allow them to grow more rapidly and to help them combat oxidative stress," says Hsieh-Wilson, who is also an investigator with the Howard Hughes Medical Institute.

This is not the first time scientists have identified a mechanism by which tumor cells might produce the intermediates they need to survive. But most other mechanisms have involved genetic alterations, or mutations—permanent changes that lead to less active forms of enzymes, for example. "What's unique here is that the addition of GlcNAc is dynamic and reversible," says Hsieh-Wilson. "This allows a cancer cell to more rapidly alter its metabolism depending on the environment that it encounters."

In their studies, Hsieh-Wilson's team found that this glycosylation—the addition of GlcNAc to PFK1—is enhanced under conditions associated with tumors, such as low oxygen levels. They also found that glycosylation of PFK1 was sensitive to the availability of nutrients. If certain nutrients were absent, glycosylation was increased, and the tumor was able to compensate for the dearth of nutrients by changing the cell's metabolism.

When the researchers analyzed human breast and lung tumor tissues, they found GlcNAc-related glycosylation was elevated two- to fourfold in the majority of tumors relative to normal tissue from the same patients. Then, working with mice injected with human lung-cancer cells, the researchers replaced the existing PFK1 enzymes with either the normal PFK1 enzyme or a mutant form that could no longer be glycosylated. The mice with the mutant form of PFK1 showed decreased tumor growth, demonstrating that blocking glycosylation impairs cancerous growth.

The work suggests at least two possible avenues for future investigations into fighting cancer. One would be to develop compounds that prevent PFK1 from becoming glycosylated, similar to the mutant PFK1 enzymes in the present study. The other would be to activate PFK1 enzymes in order to keep glycolysis operating normally and help prevent cancer cells from altering their cellular metabolism in favor of cancerous growth.

Hsieh-Wilson's group has previously studied GlcNAc-related glycosylation in the brain. They have demonstrated, for example, that the addition of GlcNAc to a protein called CREB inhibits the protein's ability to turn on genes needed for long-term memory storage. On the other hand, they have also shown that having significantly lower levels of GlcNAc in the forebrain leads to neurodegeneration. "The current thinking is that there's a balance between too little and too much glycosylation," says Hsieh-Wilson. "Being at either extreme make things go awry, whether it's in the brain or in the case of cancer cells."

Additional Caltech coauthors on the paper, "Phosphofructokinase 1 Glycosylation Regulates Cell Growth and Metabolism," were lead author Wen Yi, a postdoctoral scholar in Hsieh-Wilson's group; Peter Clark, a former graduate student in Hsieh-Wilson's group; and William Goddard III, the Charles and Mary Ferkel Professor of Chemistry, Materials Science, and Applied Physics. Daniel Mason and Eric Peters of the Genomics Institute of the Novartis Research Foundation and Marie Keenan, Collin Hill, and Edward Driggers of Agios Pharmaceuticals were also coauthors.

The work was supported by the National Institutes of Health, the Department of Defense Breast Cancer Research Program, and a Tobacco-Related Disease Research Program postdoctoral fellowship.

Written by Kimm Fesenmaier

Brian Bell | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>