Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Leakage on the continental margin


Gas seepage off Norwegian coast spans hundreds of kilometers

Off the coast of Spitsbergen, on the upper continental margin between Bear Island and Kongsfjord, methane gas is emitted from the seafloor at more than a thousand sites. Past expeditions have reported methane gas seeps off the coast of Prins Karls Forland, presumed by some scientists to be a result of the dissociation of methane hydrates in the sediments caused by warming in recent years.

The Research Vessel HEINCKE at the pier at Ny-Ålesund.

Photo: G. Bohrman/MARUM-Center for Marine Environmental Sciences, University of Bremen

Team members sample water for methane analysis.

Photo: G. Bohrman/MARUM-Center for Marine Environmental Sciences, University of Bremen

The results of two cruises of the Research Vessel HEINCKE in 2015 have revealed, however, that methane emissions are not limited to this site, but extend across five degrees of latitude along the continental margin, and is very likely associated with the Hornsund Fracture Zone. Susan Mau has now published the results together with her colleagues at MARUM – Center for Marine Environmental Sciences at the University of Bremen, and others from the Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung in Bremerhaven and Oregon State University (USA).

The investigations of Susan Mau and her colleagues are based on data from two research cruises in the summer of 2015. The gas discharge sites were identified hydroacoustically as patterns called “flares.” “We already knew about the gas seeps off Prins Karls Forland because that site has been thoroughly studied,” explains Dr. Mau.

Their data, however, reveal the presence of numerous emission sites along the entire coast. The sites follow a fracture zone on the upper continental margin that could be the conduit for the methane rising from depths along this zone. Like air from a perforated bicycle inner tube submerged in water, the rising gas can escape along the fractures and ascend through the sea water. According to Mau, the scientists measured consistently high methane concentrations along the entire slope off the coast of Svalbard. “But they were especially high at the sites where multiple flares were seen.”

In addition, the gas seepage conspicuously occurred at bathymetrically elevated areas rather than in the troughs between them. Susan Mau presumes the reason for this is fine-grained deposits sealing the pathways that gas could otherwise escape from.

Why have so many emission sites been discovered off Prins Karls Forland? Are there even more sites off the coast of Svalbard? These were the initial questions to be addressed by the cruises led by Susan Mau and Gerhard Bohrmann. Furthermore, rock samples and seismic studies have shown that the entire coast is characterized by similar tectonic conditions and glacial history. The gas seeps verified off the coast of Svalbard are interesting primarily because scientists have thought that the methane escaping here is released from methane hydrates. Methane hydrates have a solid ice-like structure that is only stable under specific pressure conditions at rather well defined depths and relatively low temperatures. When the water becomes warmer methane hydrate is no longer stable and methane is released.

Should the water warm up – due to climate change, for example – methane hydrates can only occur in deeper sediments. The boundary zone in which gas hydrates become stable is effectively shifted downward. The gas bubble emissions observed by Mau and her colleagues, however, also occur above this boundary, and thus are not anthropogenically triggered gas released from methane hydrates.

These methane seepage sites are the result, rather, of large amounts of gas from great depths escaping along the Hornsund Fracture Zone, an extensive fault zone in the Earth’s crust, a natural geologic process. This produces high gas concentrations that the team has confirmed over a range of hundreds of kilometers along the coast. The data from the summer of 2015 also indicate that the dissolved methane is oxidized by microbes within the water column and only a small proportion escapes into the atmosphere. The microbes thus prevent an increase in greenhouse gas concentrations in the atmosphere.

From their current results, numerous new questions arise for the geologists Susan Mau and Gerhard Bohrmann: What is the precise course of the actual fracture zone? What is the character of the substratum? Where are the gas reservoirs located? And: What is the age of the escaping gas? In any case, a connection between the large number of gas seeps and human-produced warming of the oceans has not been confirmed.

Because the expeditions off the coast by Mau and her colleagues were carried out in the summer, it is not certain what happens during other colder and stormier seasons. “Our results cry out for long-term studies of the seeps,” Mau emphasizes. “We have to strive to learn the reason for high methane gas concentrations that have occurred repeatedly throughout the Earth’s history. The goal is to observe the seepage sites to find out what happens over the course of the year. Only then will it be possible to draw accurate conclusions – including, for example, whether gas emissions at these depths and at this temperate zone are climate relevant.”

Dr. Susan Mau
Telephone: +49 (0) 421-21865059

Original publication:
Susan Mau, Miriam Römer, Martha E. Torres, Ingeburg Bussmann, Thomas Pape, Ellen Damm, Patrizia Geprägs, Paul Wintersteller, Chieh-Wei Hsu, Markus Loher und Gerhard Bohrmann: Widespread methane seepage along the continental margin off Svalbard - from Bjørnøya to Kongsfjorden. Sci. Rep. 7, 42997; doi: 10.1038/srep42997 (2017)

Further information / Photo material:
Ulrike Prange
Telephone: 0421 218 65540

Weitere Informationen:

Ulrike Prange | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>



Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>