Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Leakage on the continental margin


Gas seepage off Norwegian coast spans hundreds of kilometers

Off the coast of Spitsbergen, on the upper continental margin between Bear Island and Kongsfjord, methane gas is emitted from the seafloor at more than a thousand sites. Past expeditions have reported methane gas seeps off the coast of Prins Karls Forland, presumed by some scientists to be a result of the dissociation of methane hydrates in the sediments caused by warming in recent years.

The Research Vessel HEINCKE at the pier at Ny-Ålesund.

Photo: G. Bohrman/MARUM-Center for Marine Environmental Sciences, University of Bremen

Team members sample water for methane analysis.

Photo: G. Bohrman/MARUM-Center for Marine Environmental Sciences, University of Bremen

The results of two cruises of the Research Vessel HEINCKE in 2015 have revealed, however, that methane emissions are not limited to this site, but extend across five degrees of latitude along the continental margin, and is very likely associated with the Hornsund Fracture Zone. Susan Mau has now published the results together with her colleagues at MARUM – Center for Marine Environmental Sciences at the University of Bremen, and others from the Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung in Bremerhaven and Oregon State University (USA).

The investigations of Susan Mau and her colleagues are based on data from two research cruises in the summer of 2015. The gas discharge sites were identified hydroacoustically as patterns called “flares.” “We already knew about the gas seeps off Prins Karls Forland because that site has been thoroughly studied,” explains Dr. Mau.

Their data, however, reveal the presence of numerous emission sites along the entire coast. The sites follow a fracture zone on the upper continental margin that could be the conduit for the methane rising from depths along this zone. Like air from a perforated bicycle inner tube submerged in water, the rising gas can escape along the fractures and ascend through the sea water. According to Mau, the scientists measured consistently high methane concentrations along the entire slope off the coast of Svalbard. “But they were especially high at the sites where multiple flares were seen.”

In addition, the gas seepage conspicuously occurred at bathymetrically elevated areas rather than in the troughs between them. Susan Mau presumes the reason for this is fine-grained deposits sealing the pathways that gas could otherwise escape from.

Why have so many emission sites been discovered off Prins Karls Forland? Are there even more sites off the coast of Svalbard? These were the initial questions to be addressed by the cruises led by Susan Mau and Gerhard Bohrmann. Furthermore, rock samples and seismic studies have shown that the entire coast is characterized by similar tectonic conditions and glacial history. The gas seeps verified off the coast of Svalbard are interesting primarily because scientists have thought that the methane escaping here is released from methane hydrates. Methane hydrates have a solid ice-like structure that is only stable under specific pressure conditions at rather well defined depths and relatively low temperatures. When the water becomes warmer methane hydrate is no longer stable and methane is released.

Should the water warm up – due to climate change, for example – methane hydrates can only occur in deeper sediments. The boundary zone in which gas hydrates become stable is effectively shifted downward. The gas bubble emissions observed by Mau and her colleagues, however, also occur above this boundary, and thus are not anthropogenically triggered gas released from methane hydrates.

These methane seepage sites are the result, rather, of large amounts of gas from great depths escaping along the Hornsund Fracture Zone, an extensive fault zone in the Earth’s crust, a natural geologic process. This produces high gas concentrations that the team has confirmed over a range of hundreds of kilometers along the coast. The data from the summer of 2015 also indicate that the dissolved methane is oxidized by microbes within the water column and only a small proportion escapes into the atmosphere. The microbes thus prevent an increase in greenhouse gas concentrations in the atmosphere.

From their current results, numerous new questions arise for the geologists Susan Mau and Gerhard Bohrmann: What is the precise course of the actual fracture zone? What is the character of the substratum? Where are the gas reservoirs located? And: What is the age of the escaping gas? In any case, a connection between the large number of gas seeps and human-produced warming of the oceans has not been confirmed.

Because the expeditions off the coast by Mau and her colleagues were carried out in the summer, it is not certain what happens during other colder and stormier seasons. “Our results cry out for long-term studies of the seeps,” Mau emphasizes. “We have to strive to learn the reason for high methane gas concentrations that have occurred repeatedly throughout the Earth’s history. The goal is to observe the seepage sites to find out what happens over the course of the year. Only then will it be possible to draw accurate conclusions – including, for example, whether gas emissions at these depths and at this temperate zone are climate relevant.”

Dr. Susan Mau
Telephone: +49 (0) 421-21865059

Original publication:
Susan Mau, Miriam Römer, Martha E. Torres, Ingeburg Bussmann, Thomas Pape, Ellen Damm, Patrizia Geprägs, Paul Wintersteller, Chieh-Wei Hsu, Markus Loher und Gerhard Bohrmann: Widespread methane seepage along the continental margin off Svalbard - from Bjørnøya to Kongsfjorden. Sci. Rep. 7, 42997; doi: 10.1038/srep42997 (2017)

Further information / Photo material:
Ulrike Prange
Telephone: 0421 218 65540

Weitere Informationen:

Ulrike Prange | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

Science & Research
Overview of more VideoLinks >>>