Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leaf chewing links insect diversity in modern and ancient forests

05.05.2014

Observations of insects and their feeding marks on leaves in modern forests confirm indications from fossil leaf deposits that the diversity of chewing damage relates directly to diversity of the insect population that created it, according to an international team of researchers.

"The direct link between richness of leaf-chewing insects and their feeding damage across host plants in two tropical forests validates the underlying assumptions of many paleobiological studies that rely on damage-type richness as a means to infer changes in relative herbivore richness through time," the researchers report in today's (May 2) issue of a.


A scarab beetle (Coleoptera: Scarabaeidae) observed inducing margin feeding on leaves from Tapirira guianensis Aubl. tree during feeding experiments.

Credit: Wilf, Penn State


A katydid observed inducing margin feeding on leaves from Guatteria dumetorum tree during feeding experiments.

Credit: Wilf, Penn State

Studies of leaf chewing include observation of the leaves, but rarely include all the insects that actually made the marks. Mónica R. Carvalho, graduate student, Cornell University and Peter Wilf, professor of geosciences, Penn State, and colleagues looked at leaf predation in two tropical forests in Panama to test for a relationship between the richness of leaf-chewing insects and the leaf damage that the same insects induce.

Using Smithsonian Tropical Research Institute canopy-access cranes and working in the dark at almost 200 feet high in the treetops at new moon during two summers the researchers collected a total of 276 adult and immature leaf-chewing insects of 156 species. While the largest category of insect was beetles, leaf chewers among grasshoppers, stick insects and caterpillars, as well as a few ants, were also collected.

The team also collected fresh leaves of the insects' host plants and placed the insects in feeding experiment bags with these leaves. They allowed adult insects to feed for two to three days and immature stages to feed until full maturity when possible. The researchers then classified the damage to the leaves into categories, in the same way they catalog fossil leaf- chewing damage.

"This is the first attempt to compare leaf-chewing damage inflicted by many kinds of living insects on many kinds of plants throughout a large forest area, both to the culprit insects and to the leaf damage we see in the fossil record," said Carvalho. "We mounted 276 of the insects with their damaged leaves and deposited them in the STRI Insect Collection."

This collection is the only known vouchered collection of diverse, identified insects and their feeding damage on leaves of identified plant hosts.

The number of collected insect species correlated strongly with the number of damage types recorded in canopy leaves of 24 tree and liana species observed in the feeding experiments. This suggests that the number of types of damage seen in the fossil record is also related to the actual diversity of damage-making insects.

The researchers also compared the modern leaf data to fossil data from Colombia, Argentina, the Great Plains and the Rocky Mountains. They found that the distribution of chewing marks was the same across both modern and ancient settings, showing a striking consistency in how insects have divided up their leaf resources since at least the end of the age of dinosaurs.

"In the fossil record we frequently find a decrease in damage-type richness during cooling events and after extinctions and an increase in damage-type richness during warming events and post-extinction recovery," said Wilf. "Usually, insect body-fossils from these critical time intervals are absent or very rare, so we rely on the insect-damaged leaves to tell the story. These fossil studies have been considered tremendously important for understanding how ecosystems have responded, and will respond, to climate change and disturbance. We now have direct observational evidence that the fossil data represent changes in actual insect richness and no longer need to infer this through deduction alone."

"This work also unlocks the potential to use insect damage as a new way to assess living insect richness, as in the fossil record, in the context of climate change," said Carvalho. "We used fossils to frame a hypothesis about how the world works, today and through time, and discovered in the living tropical rainforest that the hypothesis is correct. More kinds of chewing marks means more kinds of insects."

### 

Other researchers on this project were Héctor Barrios, Programa de Maestría en Entomología, Universidad de Panamá; Donald M. Windsor and Carlos A. Jaramillo, Smithsonian Tropical Research Institute, Panamá; Ellen Currano, assistant professor of geology and environmental earth science, Miami University of Ohio; Conrad C. Labandeira, department of paleobiology, Smithsonian Institution and department of entomology, University of Maryland.

The David and Lucile Packard Foundation and the National Science Foundation supported this research.

A'ndrea Elyse Messer | Eurek Alert!

Further reports about: Carvalho damage diversity forests immature insect leaves species tropical tropical forests

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>