Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leaf chewing links insect diversity in modern and ancient forests

05.05.2014

Observations of insects and their feeding marks on leaves in modern forests confirm indications from fossil leaf deposits that the diversity of chewing damage relates directly to diversity of the insect population that created it, according to an international team of researchers.

"The direct link between richness of leaf-chewing insects and their feeding damage across host plants in two tropical forests validates the underlying assumptions of many paleobiological studies that rely on damage-type richness as a means to infer changes in relative herbivore richness through time," the researchers report in today's (May 2) issue of a.


A scarab beetle (Coleoptera: Scarabaeidae) observed inducing margin feeding on leaves from Tapirira guianensis Aubl. tree during feeding experiments.

Credit: Wilf, Penn State


A katydid observed inducing margin feeding on leaves from Guatteria dumetorum tree during feeding experiments.

Credit: Wilf, Penn State

Studies of leaf chewing include observation of the leaves, but rarely include all the insects that actually made the marks. Mónica R. Carvalho, graduate student, Cornell University and Peter Wilf, professor of geosciences, Penn State, and colleagues looked at leaf predation in two tropical forests in Panama to test for a relationship between the richness of leaf-chewing insects and the leaf damage that the same insects induce.

Using Smithsonian Tropical Research Institute canopy-access cranes and working in the dark at almost 200 feet high in the treetops at new moon during two summers the researchers collected a total of 276 adult and immature leaf-chewing insects of 156 species. While the largest category of insect was beetles, leaf chewers among grasshoppers, stick insects and caterpillars, as well as a few ants, were also collected.

The team also collected fresh leaves of the insects' host plants and placed the insects in feeding experiment bags with these leaves. They allowed adult insects to feed for two to three days and immature stages to feed until full maturity when possible. The researchers then classified the damage to the leaves into categories, in the same way they catalog fossil leaf- chewing damage.

"This is the first attempt to compare leaf-chewing damage inflicted by many kinds of living insects on many kinds of plants throughout a large forest area, both to the culprit insects and to the leaf damage we see in the fossil record," said Carvalho. "We mounted 276 of the insects with their damaged leaves and deposited them in the STRI Insect Collection."

This collection is the only known vouchered collection of diverse, identified insects and their feeding damage on leaves of identified plant hosts.

The number of collected insect species correlated strongly with the number of damage types recorded in canopy leaves of 24 tree and liana species observed in the feeding experiments. This suggests that the number of types of damage seen in the fossil record is also related to the actual diversity of damage-making insects.

The researchers also compared the modern leaf data to fossil data from Colombia, Argentina, the Great Plains and the Rocky Mountains. They found that the distribution of chewing marks was the same across both modern and ancient settings, showing a striking consistency in how insects have divided up their leaf resources since at least the end of the age of dinosaurs.

"In the fossil record we frequently find a decrease in damage-type richness during cooling events and after extinctions and an increase in damage-type richness during warming events and post-extinction recovery," said Wilf. "Usually, insect body-fossils from these critical time intervals are absent or very rare, so we rely on the insect-damaged leaves to tell the story. These fossil studies have been considered tremendously important for understanding how ecosystems have responded, and will respond, to climate change and disturbance. We now have direct observational evidence that the fossil data represent changes in actual insect richness and no longer need to infer this through deduction alone."

"This work also unlocks the potential to use insect damage as a new way to assess living insect richness, as in the fossil record, in the context of climate change," said Carvalho. "We used fossils to frame a hypothesis about how the world works, today and through time, and discovered in the living tropical rainforest that the hypothesis is correct. More kinds of chewing marks means more kinds of insects."

### 

Other researchers on this project were Héctor Barrios, Programa de Maestría en Entomología, Universidad de Panamá; Donald M. Windsor and Carlos A. Jaramillo, Smithsonian Tropical Research Institute, Panamá; Ellen Currano, assistant professor of geology and environmental earth science, Miami University of Ohio; Conrad C. Labandeira, department of paleobiology, Smithsonian Institution and department of entomology, University of Maryland.

The David and Lucile Packard Foundation and the National Science Foundation supported this research.

A'ndrea Elyse Messer | Eurek Alert!

Further reports about: Carvalho damage diversity forests immature insect leaves species tropical tropical forests

More articles from Life Sciences:

nachricht Biology in a twist -- deciphering the origins of cell behavior
31.03.2015 | National University of Singapore

nachricht Speech dynamics are coded in the left motor cortex
31.03.2015 | Universitätsmedizin Göttingen - Georg-August-Universität

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Biology in a twist -- deciphering the origins of cell behavior

31.03.2015 | Life Sciences

Wrapping carbon nanotubes in polymers enhances their performance

31.03.2015 | Materials Sciences

Research Links Two Millennia of Cyclones, Floods, El Niño

31.03.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>