Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leaf chewing links insect diversity in modern and ancient forests

05.05.2014

Observations of insects and their feeding marks on leaves in modern forests confirm indications from fossil leaf deposits that the diversity of chewing damage relates directly to diversity of the insect population that created it, according to an international team of researchers.

"The direct link between richness of leaf-chewing insects and their feeding damage across host plants in two tropical forests validates the underlying assumptions of many paleobiological studies that rely on damage-type richness as a means to infer changes in relative herbivore richness through time," the researchers report in today's (May 2) issue of a.


A scarab beetle (Coleoptera: Scarabaeidae) observed inducing margin feeding on leaves from Tapirira guianensis Aubl. tree during feeding experiments.

Credit: Wilf, Penn State


A katydid observed inducing margin feeding on leaves from Guatteria dumetorum tree during feeding experiments.

Credit: Wilf, Penn State

Studies of leaf chewing include observation of the leaves, but rarely include all the insects that actually made the marks. Mónica R. Carvalho, graduate student, Cornell University and Peter Wilf, professor of geosciences, Penn State, and colleagues looked at leaf predation in two tropical forests in Panama to test for a relationship between the richness of leaf-chewing insects and the leaf damage that the same insects induce.

Using Smithsonian Tropical Research Institute canopy-access cranes and working in the dark at almost 200 feet high in the treetops at new moon during two summers the researchers collected a total of 276 adult and immature leaf-chewing insects of 156 species. While the largest category of insect was beetles, leaf chewers among grasshoppers, stick insects and caterpillars, as well as a few ants, were also collected.

The team also collected fresh leaves of the insects' host plants and placed the insects in feeding experiment bags with these leaves. They allowed adult insects to feed for two to three days and immature stages to feed until full maturity when possible. The researchers then classified the damage to the leaves into categories, in the same way they catalog fossil leaf- chewing damage.

"This is the first attempt to compare leaf-chewing damage inflicted by many kinds of living insects on many kinds of plants throughout a large forest area, both to the culprit insects and to the leaf damage we see in the fossil record," said Carvalho. "We mounted 276 of the insects with their damaged leaves and deposited them in the STRI Insect Collection."

This collection is the only known vouchered collection of diverse, identified insects and their feeding damage on leaves of identified plant hosts.

The number of collected insect species correlated strongly with the number of damage types recorded in canopy leaves of 24 tree and liana species observed in the feeding experiments. This suggests that the number of types of damage seen in the fossil record is also related to the actual diversity of damage-making insects.

The researchers also compared the modern leaf data to fossil data from Colombia, Argentina, the Great Plains and the Rocky Mountains. They found that the distribution of chewing marks was the same across both modern and ancient settings, showing a striking consistency in how insects have divided up their leaf resources since at least the end of the age of dinosaurs.

"In the fossil record we frequently find a decrease in damage-type richness during cooling events and after extinctions and an increase in damage-type richness during warming events and post-extinction recovery," said Wilf. "Usually, insect body-fossils from these critical time intervals are absent or very rare, so we rely on the insect-damaged leaves to tell the story. These fossil studies have been considered tremendously important for understanding how ecosystems have responded, and will respond, to climate change and disturbance. We now have direct observational evidence that the fossil data represent changes in actual insect richness and no longer need to infer this through deduction alone."

"This work also unlocks the potential to use insect damage as a new way to assess living insect richness, as in the fossil record, in the context of climate change," said Carvalho. "We used fossils to frame a hypothesis about how the world works, today and through time, and discovered in the living tropical rainforest that the hypothesis is correct. More kinds of chewing marks means more kinds of insects."

### 

Other researchers on this project were Héctor Barrios, Programa de Maestría en Entomología, Universidad de Panamá; Donald M. Windsor and Carlos A. Jaramillo, Smithsonian Tropical Research Institute, Panamá; Ellen Currano, assistant professor of geology and environmental earth science, Miami University of Ohio; Conrad C. Labandeira, department of paleobiology, Smithsonian Institution and department of entomology, University of Maryland.

The David and Lucile Packard Foundation and the National Science Foundation supported this research.

A'ndrea Elyse Messer | Eurek Alert!

Further reports about: Carvalho damage diversity forests immature insect leaves species tropical tropical forests

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>