Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Le Rouge et le Noir: Where the black dahlia gets its color

23.11.2012
The molecular mechanisms whereby a spectrum of dahlias, from white to yellow to red to purple, get their colour are already well known, but the black dahlia has hitherto remained a mystery.

Now, a study published in BioMed Central's open-access journal BMC Plant Biology reveals for the first time that the distinctive black-red colouring is based on an increased accumulation of anthocyanins as a result of drastically reduced concentrations of flavones.


Dahlia variabilis hort. is a popular garden flower. Continuous dahlia breeding worldwide has led to the availability of a huge number of cultivars – 20,000 varieties – many of them showing red hues. However, black hues of dahlia flowers occur rarely, in comparison.

Credit: Dr. Heidi Halbwirth

Dahlia variabilis hort. is a popular garden flower. Continuous dahlia breeding worldwide has led to the availability of a huge number of cultivars – 20,000 varieties – many of them showing red hues. However, black hues of dahlia flowers occur rarely, in comparison.

Flower colour in dahlias is exclusively based on the accumulation of a group of metabolites called flavonoids, for example anthocyanins, flavones and flavonols. It's known that red tones arise from anthocyanins, whilst white and yellow tones lack anthocyanins but contain large amounts of flavones and chalcones respectively. Flavones and flavonoids are colourless, but they influence flower colouration by acting as co-pigments, interacting with anthocyanins to stabilize their structures. It is assumed that flavones rather than flavonols are the predominant co-pigments present in dahlias since all cultivars show high flavone synthase II (FNS) enzyme activity and low flavonol synthase activity.

To examine the biochemical basis for the distinctive dark colouring of the black dahlia, the research team from the Vienna University of Technology in Austria used pigment, enzyme and gene expression analyses. They determined that the majority of black cultivars have very low concentrations of flavones, as confirmed by low FNS II expression. Since flavones compete with anthocyanin biosynthesis for common intermediates, the lack of flavones favours the accumulation of huge amounts of anthocyanins that are found in black dahlias. The flavonol contents of black dahlias increased slightly parallel to the decrease of flavones.

Heidi Halbwirth, lead author, emphasised that the black colour of dahlias is not due to increased activity of the anthocyanin pathway, but rather is the result of the intermediates being converted into anthocyanins at the expense of formation of flavones.

Halbwirth commented, "The molecular explanation for the specific suppression of flavone formation in the majority of black dahlias will be of interest for further research. As the dahlia is an octoploid plant and the presence of several alleles is expected, the simultaneous suppression of all FNS II isoenzymes indicates an effective mechanism that could be used for engineering plants with tailor-made flavone contents."

Media contact

Dr Hilary Glover
Scientific Press Officer, BioMed Central
Tel: +44 (0) 20 3192 2370
Mob: +44 (0) 778 698 1967
Email: hilary.glover@biomedcentral.com
1. 'Le Rouge et le Noir': A decline in flavone formation correlates with the rare color of black dahlia (Dahlia variabilis hort.) flowers Jana Thill, Silvija Miosic, Romel Ahmed, Karin Schlangen, Gerlinde Muster, Karl Stich and Heidi Halbwirth BMC Plant Biology (in press)

Please credit pictures to Dr Heidi Halbwirth

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request on the day of publication.

2. BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research. @BMC_Series

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector. @BioMedCentral

Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>