Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From one laying to another the female collembolan adapts its eggs to environmental constraints

22.09.2008
Reproductive plasticity – the ability of individuals to modify their reproduction and the characteristics of their progeny according to environmental or social conditions – is a crucial factor in the demographics of animal populations, including man.

Two scientists in the Laboratoire Écologie & Évolution (CNRS/Université Pierre et Marie Curie/École normale supérieure de Paris) have demonstrated the adaptive nature of the reproductive behavior of certain arthropods from one laying to another, in the same female.

Thomas Tully and Régis Ferrière, researchers in the Laboratoire Écologie & Évolution(1), studied populations of Collembola, one of the most ancient and abundant groups of arthropods on Earth.

They showed that over the course of evolution, some Collembola populations have acquired an extraordinary ability to adjust their reproductive behavior when faced with abrupt environmental or social change. From one laying to another, a female can adapt not only the number but the size of her eggs, so that the young will be more capable of surviving in their new environmental conditions.

In a food-rich environment, females will tend to lay a larger number of smaller eggs. In a highly competitive environment, where individuals are numerous but food is less abundant, the eggs will be fewer in number but larger, thus allowing larger newborns to survive better under these difficult conditions.

Such flexibility constitutes a major adaptation, but the scientists also noted that the most plastic lines of Collembola were also those that experienced the earliest mortality. In this species, two strategies coexist in nature: plastic reproduction at the cost of reduced longevity, or a longer life without any great capacity for reproductive adjustment.

Comparison of these two strategies, which diverged at an early stage in the evolutionary history of this species, suggests that accelerated aging could result not simply from more intense reproduction but also from a high level of plasticity and genetic potential for reproduction.

Julien Guillaume | alfa
Further information:
http://www.cnrs.fr

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>