Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


From one laying to another the female collembolan adapts its eggs to environmental constraints

Reproductive plasticity – the ability of individuals to modify their reproduction and the characteristics of their progeny according to environmental or social conditions – is a crucial factor in the demographics of animal populations, including man.

Two scientists in the Laboratoire Écologie & Évolution (CNRS/Université Pierre et Marie Curie/École normale supérieure de Paris) have demonstrated the adaptive nature of the reproductive behavior of certain arthropods from one laying to another, in the same female.

Thomas Tully and Régis Ferrière, researchers in the Laboratoire Écologie & Évolution(1), studied populations of Collembola, one of the most ancient and abundant groups of arthropods on Earth.

They showed that over the course of evolution, some Collembola populations have acquired an extraordinary ability to adjust their reproductive behavior when faced with abrupt environmental or social change. From one laying to another, a female can adapt not only the number but the size of her eggs, so that the young will be more capable of surviving in their new environmental conditions.

In a food-rich environment, females will tend to lay a larger number of smaller eggs. In a highly competitive environment, where individuals are numerous but food is less abundant, the eggs will be fewer in number but larger, thus allowing larger newborns to survive better under these difficult conditions.

Such flexibility constitutes a major adaptation, but the scientists also noted that the most plastic lines of Collembola were also those that experienced the earliest mortality. In this species, two strategies coexist in nature: plastic reproduction at the cost of reduced longevity, or a longer life without any great capacity for reproductive adjustment.

Comparison of these two strategies, which diverged at an early stage in the evolutionary history of this species, suggests that accelerated aging could result not simply from more intense reproduction but also from a high level of plasticity and genetic potential for reproduction.

Julien Guillaume | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>