Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Laying bare the not-so-sweet tale of a sugar and its role in the spread of cancer

Scientists close in on molecular moves that let tumor cells act as stowaways in lymphatic system

Cancer has a mighty big bag of tricks that it uses to evade the body's natural defense mechanisms and proliferate. Among those tricks is one that allows tumor cells to turn the intricate and extensive system of lymphatic vessels into something of a highway to metastasis. Yet research unveiled this week may aid in the development of therapeutics that will put the brakes on such cancer spread, and the researchers who completed the study say the findings may extend to other lymphatic disorders.

In the latest issue of the Journal of Biological Chemistry, the team at the VA San Diego Healthcare System and the University of California, San Diego, reports an important advance in the understanding of the molecular machinery needed for lymphatic cell growth.

"In many carcinomas, lymphatic vessels grow and remodel around and sometimes within tumors. This allows tumor cells to go upstream to the lymph nodes," explains assistant professor Mark Fuster, who led the study. Once tumor cells hitch a ride to the lymph nodes, the disease can be more difficult to fight. "We were trying to understand the mechanisms that turn on the growth of lymphatic vessel cells in the laboratory."

To better understand how tumors get lymphatic vessels to construct an entry ramp for cancerous cells, Fuster's team began by looking at a much-studied lymphatic stimulatory protein that is often over-produced by tumors. The protein migrates from the tumor to a layer of cells within lymphatic vessels known as the endothelium. The tumor-produced protein is officially known as vascular endothelial growth factor C, or VEGF-C for short (pronounced "vej-eff-cee").

"The growth factor VEGF-C lands on a special receiving molecule, or receptor, on the surface of the lymphatic endothelial cells, sending a signal that says it's time for the endothelial cells to replicate and send offshoots," Fuster says. But the team was curious as to whether VEGF-C and its receptor were getting any help from nearby molecules to make that happen. "After all, if there were other players in the mix, that might mean there are other possible drug targets," Fuster explains.

The team focused on a glycan, or sugar, known as heparan sulfate. After some initial clues indicated that destroying the unique sugar on lymphatic endothelial cells would inhibit VEGF-C-dependent growth signaling, Fuster and his team dug in to figure out more about heparan sulfate's role.

"In a cell-based system, we tried to interfere with the components that are involved in making heparan sulfate in lymphatic endothelial cells. We tried inhibiting the production of the sugar and destroying it," Fuster says.

Xin Yin, a postdoctoral research fellow, and Scott Johns, a research associate in the laboratory, both lead authors on the paper, carried out a variety of studies to examine how silencing enzymes in the cell that are responsible for putting the sugar together might alter various cell-growth behaviors and affect VEGF-C's ability to activate its receptor.

"What we found was that giving the glycan-altered cells the VEGF-C resulted in a blunting of the normal growth rate or signaling for growth," Fuster says. "This work shows there may be a key role for heparan sulfate in the initiation of lymphatic vessel-growth responses."

In the setting of cancer, it is thus possible that the presence of heparan sulfate is important for tumor-spurred lymphatic vessel growth: This not only identifies a potential target for anti-cancer drugs, Fuster says, but it may also offer insights about how to stimulate lymphatic vascular growth in diseased parts of the body that, conversely, need lymphatic vessels for normal circulatory and immune functions.

Still, though, Fuster emphasizes that more work remains to be done, because how exactly heparan sulfate interacts with VEGF-C and its receptor remains unclear: "Identifying the importance of heparan sulfate in the growth of living lymphatic systems and identifying its possible importance in mediating the functions of multiple lymphatic growth factors simultaneously remain important considerations for ongoing and future research."

Fuster is affiliated with the VA San Diego Healthcare System and the University of California, San Digeo. His team's article was named a "Paper of the Week" by the Journal of Biological Chemistry's editorial board, landing it in the top 1 percent of all papers published over the year in the journal. The online version of the article can be found at, and it will appear in the April 29 print issue of the journal.

The team's project was funded by a career development award to Fuster from the U.S. Department of Veterans Affairs, by the American Cancer Society, by the Uniting Against Lung Cancer Foundation, and by Program Project funding by the National Institutes of Health.

Other team members included Roger Lawrence, Ding Xu, Krisanavane Reddi, Joseph Bishop and Judith Varner.

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions.

Angela Hopp | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>