Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laying bare the not-so-sweet tale of a sugar and its role in the spread of cancer

26.04.2011
Scientists close in on molecular moves that let tumor cells act as stowaways in lymphatic system

Cancer has a mighty big bag of tricks that it uses to evade the body's natural defense mechanisms and proliferate. Among those tricks is one that allows tumor cells to turn the intricate and extensive system of lymphatic vessels into something of a highway to metastasis. Yet research unveiled this week may aid in the development of therapeutics that will put the brakes on such cancer spread, and the researchers who completed the study say the findings may extend to other lymphatic disorders.

In the latest issue of the Journal of Biological Chemistry, the team at the VA San Diego Healthcare System and the University of California, San Diego, reports an important advance in the understanding of the molecular machinery needed for lymphatic cell growth.

"In many carcinomas, lymphatic vessels grow and remodel around and sometimes within tumors. This allows tumor cells to go upstream to the lymph nodes," explains assistant professor Mark Fuster, who led the study. Once tumor cells hitch a ride to the lymph nodes, the disease can be more difficult to fight. "We were trying to understand the mechanisms that turn on the growth of lymphatic vessel cells in the laboratory."

To better understand how tumors get lymphatic vessels to construct an entry ramp for cancerous cells, Fuster's team began by looking at a much-studied lymphatic stimulatory protein that is often over-produced by tumors. The protein migrates from the tumor to a layer of cells within lymphatic vessels known as the endothelium. The tumor-produced protein is officially known as vascular endothelial growth factor C, or VEGF-C for short (pronounced "vej-eff-cee").

"The growth factor VEGF-C lands on a special receiving molecule, or receptor, on the surface of the lymphatic endothelial cells, sending a signal that says it's time for the endothelial cells to replicate and send offshoots," Fuster says. But the team was curious as to whether VEGF-C and its receptor were getting any help from nearby molecules to make that happen. "After all, if there were other players in the mix, that might mean there are other possible drug targets," Fuster explains.

The team focused on a glycan, or sugar, known as heparan sulfate. After some initial clues indicated that destroying the unique sugar on lymphatic endothelial cells would inhibit VEGF-C-dependent growth signaling, Fuster and his team dug in to figure out more about heparan sulfate's role.

"In a cell-based system, we tried to interfere with the components that are involved in making heparan sulfate in lymphatic endothelial cells. We tried inhibiting the production of the sugar and destroying it," Fuster says.

Xin Yin, a postdoctoral research fellow, and Scott Johns, a research associate in the laboratory, both lead authors on the paper, carried out a variety of studies to examine how silencing enzymes in the cell that are responsible for putting the sugar together might alter various cell-growth behaviors and affect VEGF-C's ability to activate its receptor.

"What we found was that giving the glycan-altered cells the VEGF-C resulted in a blunting of the normal growth rate or signaling for growth," Fuster says. "This work shows there may be a key role for heparan sulfate in the initiation of lymphatic vessel-growth responses."

In the setting of cancer, it is thus possible that the presence of heparan sulfate is important for tumor-spurred lymphatic vessel growth: This not only identifies a potential target for anti-cancer drugs, Fuster says, but it may also offer insights about how to stimulate lymphatic vascular growth in diseased parts of the body that, conversely, need lymphatic vessels for normal circulatory and immune functions.

Still, though, Fuster emphasizes that more work remains to be done, because how exactly heparan sulfate interacts with VEGF-C and its receptor remains unclear: "Identifying the importance of heparan sulfate in the growth of living lymphatic systems and identifying its possible importance in mediating the functions of multiple lymphatic growth factors simultaneously remain important considerations for ongoing and future research."

Fuster is affiliated with the VA San Diego Healthcare System and the University of California, San Digeo. His team's article was named a "Paper of the Week" by the Journal of Biological Chemistry's editorial board, landing it in the top 1 percent of all papers published over the year in the journal. The online version of the article can be found at http://www.jbc.org/content/286/17/14952, and it will appear in the April 29 print issue of the journal.

The team's project was funded by a career development award to Fuster from the U.S. Department of Veterans Affairs, by the American Cancer Society, by the Uniting Against Lung Cancer Foundation, and by Program Project funding by the National Institutes of Health.

Other team members included Roger Lawrence, Ding Xu, Krisanavane Reddi, Joseph Bishop and Judith Varner.

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions.

Angela Hopp | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>