Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Layered Footballs

10.06.2010
First two-dimensional organic metal made of fullerenes

Since their discovery in the mid 1980s, fullerenes have caused a sensation. The tiny hollow spheres made of 60 carbon atoms, constructed out of pentagons and hexagons like miniature soccer balls, have unusual physical properties.

In the meantime, a variety of fullerene-containing materials have been developed. Now a new variant has been made: A Russian and Japanese team has produced the first material made of two-dimensional fullerene layers that acts like a metal. As the researchers report in the journal Angewandte Chemie, this new class of compounds could open a route toward novel superconducting materials.

All previous fullerene-containing crystals with metallic properties have been one- or three-dimensional structures and contained metal elements. Dmitri V. Konarev, Gunzi Saito, and their co-workers from Chernogolovka, Kyoto, and Nagoya had the ambition to make a metallic conducting fullerene “salt” containing two-dimensional fullerene layers. In addition, they wanted it to be free of metal ions, containing only the elements carbon, hydrogen, and nitrogen.

For this to work, three different components were needed: 1) fullerene anions, negatively charged “miniature soccer balls”; 2) positively charged organic counterions (cations); and 3) large neutral organic molecules. Component 2, the cations, are needed to maintain the right distribution of electrical charge within the material. The neutral compound 3 assures the correct spatial arrangement of the individual building blocks within the crystal structure.

The problem: fullerene anions in a crystal have a tendency to form pairs. In order for the material to behave as a metal, the fullerene anions need to be densely packed within their layer. Only when the geometry and size of the neutral partner are exactly right does this work. The team chose to use triptycene as the neutral component; this is an aromatic ring system whose shape is reminiscent of a three-bladed propeller. The organic cation they used has a cage-like structure.

The result is a crystal in which fullerene layers alternate with layers made of the two other partners. The fullerene layer has a honeycomb structure in which every tiny, negatively charged “soccer ball” has six adjacent neighbors. The fullerene layers are highly conducting like a metal—even down to temperatures near absolute zero (1.9 K), which is very unusual.

It should be possible to produce other materials in this class by varying the individual partners. The researches expect that this will produce materials with exotic electronic properties, such as novel superconductors or spin liquids, which are materials that show an unusual magnetic state at absolute zero.

Author: Dimitri Konarev, Russian Academy of Science, Moscow (Russia), mailto:konarev@icp.ac.ru

Title: A Two-Dimensional Organic Metal Based on Fullerene

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201001463

Dimitri Konarev | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>