Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Launch of the EU large-scale integrating project "BlueGenics" to combat osteoporosis

07.12.2012
Project aims to discover the genetic blueprints for new drugs from marine organisms that could help to prevent and to treat major human diseases such as osteoporosis

Searching for substances from the deep sea to combat osteoporosis and other human common diseases is one of the objectives of the new European research project "BlueGenics" which has received funding of EUR 6 million from the European Commission.

Specifically, the international research team, coordinated by Professor Dr. Werner E.G. Müller from the Institute of Physiological Chemistry of the Mainz University Medical Center, intends to identify and to utilize genetic blueprints from marine organisms, including deep-sea sponges and bacteria, for the production of biomedically relevant substances. The novel research approach provided by this research team will allow the sustainable use of marine resources without negative impact on biodiversity.

"As we can see, by funding this joint large-scale research project the European Union has recognized the need to make every effort to develop new and effective drugs for the prevention and treatment of common diseases, for which efficient therapies are still missing, such as osteoporosis," said the coordinator of the BlueGenics project, Professor Dr. Werner E.G. Müller. "I am extremely glad that this project has now been successfully started. BlueGenics brings together leading researchers from nine countries. The unique and complementary expertise provided by these and their advanced equipment provide an excellent basis to reach the ambitious objectives of this project," Müller continued.

The innovative research concept of BlueGenics offers the chance of achieving extraordinary success as seen by the European Commission. The international team of scientists led by the molecular biologist Professor Dr. Werner E.G. Müller together with NanotecMARIN GmbH, a research-based spin-off company at Mainz University, headed by Professor Dr. Heinz C. Schröder and Professor Dr. Xiaohong Wang, both also from the Institute of Physiological Chemistry at JGU, have developed a research strategy that aims to combine research on biomedical-relevant genes from marine animals and bacteria with the most advanced chemical synthesis and structure analysis techniques. The team led by Müller will use this research approach to develop substances up to pre-clinical testing. In this project, the Mainz team will primarily focus on substances that could be used for prophylaxis and/or therapy of osteoporosis as well as on new antimicrobial peptides and compounds with neuroprotective activity.

Müller and his research team have already demonstrated that bioactive substances can be synthesized by applying recombinant molecular biology techniques. They were able to demonstrate that defensin, a toxin and defense peptide produced by sponges, is bioactive if produced in a recombinant way. "This paves the way for exploiting the large treasure of genetic blueprints present in the world-wide oceans for human benefit," Müller said.

The European project BlueGenics brings together the leading researchers from the areas of marine genomics, biosynthesis, and chemical structure analysis. Participants of this project coordinated by Professor Dr. Werner E.G. Müller at the Mainz University Medical Center are 16 research institutions and industrial companies from Germany, France, Croatia, Portugal, Iceland, Italy, Sweden, UK, and China. According to Professor Dr. Dr. Reinhard Urban, Chief Scientific Officer of the University Medical Center, the EU is well advised to fund projects like BlueGenics: "We are practically just at the beginning to exploit marine resources, especially those from the little-explored deep sea, for biomedical purposes. However, it is now already foreseeable that research on deep-sea organisms is likely to produce remarkable results for our society."

BLUE BIOTECHNOLOGY
The so-called Blue Biotechnology is primarily concerned with the biotechnological use of marine organisms. Of particular interest are sponges and deep-sea bacteria that live under extreme conditions in more than 1,000 meters below the sea level. These organisms are considered to be a source of novel valuable substances that can be used in biotechnology and biomedicine. While the majority of the known enzymes break down on exposure to high temperatures, the biocatalysts produced by deep-sea bacteria remain active under extreme conditions, even in the vicinity of marine hydrothermal vents.

What makes blue technology so interesting for research is the fact that even obviously simple organisms, such as marine sponges, are remarkably similar to humans in many ways. The evolutionary relationship between these oldest animals and human beings is surprisingly close, as the Mainz research team has demonstrated in recent years by means of molecular biological techniques. In addition, these organisms produce a variety of substances that have evolved a high degree of specificity and effectiveness during the course of evolution, and hence have attracted increasing interest with regard to their possible therapeutic use in humans, for example for the treatment of viral infections.

Contact
Professor Dr. Werner E.G. Müller
Institute of Physiological Chemistry, Mainz University Medical Center
phone +49 6131 39-25910, fax +49 6131 39-25243, e-mail: wmueller@uni-mainz.de

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/15944_ENG_HTML.php
http://www.uni-mainz.de/magazin/874_ENG_HTML.php

More articles from Life Sciences:

nachricht Subcutaneous Administration of Multispecific Antibody Makes Tumor Treatment Faster & More Tolerable
01.07.2015 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Why human egg cells don't age well
01.07.2015 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Offshore wind park Westermost Rough officially inaugurated

01.07.2015 | Press release

Siemens Velaro train wins "Red Dot" award

01.07.2015 | Awards Funding

Liquids on Fibers - Slipping or Flowing?

01.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>