Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Launch of the EU large-scale integrating project "BlueGenics" to combat osteoporosis

07.12.2012
Project aims to discover the genetic blueprints for new drugs from marine organisms that could help to prevent and to treat major human diseases such as osteoporosis

Searching for substances from the deep sea to combat osteoporosis and other human common diseases is one of the objectives of the new European research project "BlueGenics" which has received funding of EUR 6 million from the European Commission.

Specifically, the international research team, coordinated by Professor Dr. Werner E.G. Müller from the Institute of Physiological Chemistry of the Mainz University Medical Center, intends to identify and to utilize genetic blueprints from marine organisms, including deep-sea sponges and bacteria, for the production of biomedically relevant substances. The novel research approach provided by this research team will allow the sustainable use of marine resources without negative impact on biodiversity.

"As we can see, by funding this joint large-scale research project the European Union has recognized the need to make every effort to develop new and effective drugs for the prevention and treatment of common diseases, for which efficient therapies are still missing, such as osteoporosis," said the coordinator of the BlueGenics project, Professor Dr. Werner E.G. Müller. "I am extremely glad that this project has now been successfully started. BlueGenics brings together leading researchers from nine countries. The unique and complementary expertise provided by these and their advanced equipment provide an excellent basis to reach the ambitious objectives of this project," Müller continued.

The innovative research concept of BlueGenics offers the chance of achieving extraordinary success as seen by the European Commission. The international team of scientists led by the molecular biologist Professor Dr. Werner E.G. Müller together with NanotecMARIN GmbH, a research-based spin-off company at Mainz University, headed by Professor Dr. Heinz C. Schröder and Professor Dr. Xiaohong Wang, both also from the Institute of Physiological Chemistry at JGU, have developed a research strategy that aims to combine research on biomedical-relevant genes from marine animals and bacteria with the most advanced chemical synthesis and structure analysis techniques. The team led by Müller will use this research approach to develop substances up to pre-clinical testing. In this project, the Mainz team will primarily focus on substances that could be used for prophylaxis and/or therapy of osteoporosis as well as on new antimicrobial peptides and compounds with neuroprotective activity.

Müller and his research team have already demonstrated that bioactive substances can be synthesized by applying recombinant molecular biology techniques. They were able to demonstrate that defensin, a toxin and defense peptide produced by sponges, is bioactive if produced in a recombinant way. "This paves the way for exploiting the large treasure of genetic blueprints present in the world-wide oceans for human benefit," Müller said.

The European project BlueGenics brings together the leading researchers from the areas of marine genomics, biosynthesis, and chemical structure analysis. Participants of this project coordinated by Professor Dr. Werner E.G. Müller at the Mainz University Medical Center are 16 research institutions and industrial companies from Germany, France, Croatia, Portugal, Iceland, Italy, Sweden, UK, and China. According to Professor Dr. Dr. Reinhard Urban, Chief Scientific Officer of the University Medical Center, the EU is well advised to fund projects like BlueGenics: "We are practically just at the beginning to exploit marine resources, especially those from the little-explored deep sea, for biomedical purposes. However, it is now already foreseeable that research on deep-sea organisms is likely to produce remarkable results for our society."

BLUE BIOTECHNOLOGY
The so-called Blue Biotechnology is primarily concerned with the biotechnological use of marine organisms. Of particular interest are sponges and deep-sea bacteria that live under extreme conditions in more than 1,000 meters below the sea level. These organisms are considered to be a source of novel valuable substances that can be used in biotechnology and biomedicine. While the majority of the known enzymes break down on exposure to high temperatures, the biocatalysts produced by deep-sea bacteria remain active under extreme conditions, even in the vicinity of marine hydrothermal vents.

What makes blue technology so interesting for research is the fact that even obviously simple organisms, such as marine sponges, are remarkably similar to humans in many ways. The evolutionary relationship between these oldest animals and human beings is surprisingly close, as the Mainz research team has demonstrated in recent years by means of molecular biological techniques. In addition, these organisms produce a variety of substances that have evolved a high degree of specificity and effectiveness during the course of evolution, and hence have attracted increasing interest with regard to their possible therapeutic use in humans, for example for the treatment of viral infections.

Contact
Professor Dr. Werner E.G. Müller
Institute of Physiological Chemistry, Mainz University Medical Center
phone +49 6131 39-25910, fax +49 6131 39-25243, e-mail: wmueller@uni-mainz.de

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/15944_ENG_HTML.php
http://www.uni-mainz.de/magazin/874_ENG_HTML.php

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>