Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Launch of the EU large-scale integrating project "BlueGenics" to combat osteoporosis

07.12.2012
Project aims to discover the genetic blueprints for new drugs from marine organisms that could help to prevent and to treat major human diseases such as osteoporosis

Searching for substances from the deep sea to combat osteoporosis and other human common diseases is one of the objectives of the new European research project "BlueGenics" which has received funding of EUR 6 million from the European Commission.

Specifically, the international research team, coordinated by Professor Dr. Werner E.G. Müller from the Institute of Physiological Chemistry of the Mainz University Medical Center, intends to identify and to utilize genetic blueprints from marine organisms, including deep-sea sponges and bacteria, for the production of biomedically relevant substances. The novel research approach provided by this research team will allow the sustainable use of marine resources without negative impact on biodiversity.

"As we can see, by funding this joint large-scale research project the European Union has recognized the need to make every effort to develop new and effective drugs for the prevention and treatment of common diseases, for which efficient therapies are still missing, such as osteoporosis," said the coordinator of the BlueGenics project, Professor Dr. Werner E.G. Müller. "I am extremely glad that this project has now been successfully started. BlueGenics brings together leading researchers from nine countries. The unique and complementary expertise provided by these and their advanced equipment provide an excellent basis to reach the ambitious objectives of this project," Müller continued.

The innovative research concept of BlueGenics offers the chance of achieving extraordinary success as seen by the European Commission. The international team of scientists led by the molecular biologist Professor Dr. Werner E.G. Müller together with NanotecMARIN GmbH, a research-based spin-off company at Mainz University, headed by Professor Dr. Heinz C. Schröder and Professor Dr. Xiaohong Wang, both also from the Institute of Physiological Chemistry at JGU, have developed a research strategy that aims to combine research on biomedical-relevant genes from marine animals and bacteria with the most advanced chemical synthesis and structure analysis techniques. The team led by Müller will use this research approach to develop substances up to pre-clinical testing. In this project, the Mainz team will primarily focus on substances that could be used for prophylaxis and/or therapy of osteoporosis as well as on new antimicrobial peptides and compounds with neuroprotective activity.

Müller and his research team have already demonstrated that bioactive substances can be synthesized by applying recombinant molecular biology techniques. They were able to demonstrate that defensin, a toxin and defense peptide produced by sponges, is bioactive if produced in a recombinant way. "This paves the way for exploiting the large treasure of genetic blueprints present in the world-wide oceans for human benefit," Müller said.

The European project BlueGenics brings together the leading researchers from the areas of marine genomics, biosynthesis, and chemical structure analysis. Participants of this project coordinated by Professor Dr. Werner E.G. Müller at the Mainz University Medical Center are 16 research institutions and industrial companies from Germany, France, Croatia, Portugal, Iceland, Italy, Sweden, UK, and China. According to Professor Dr. Dr. Reinhard Urban, Chief Scientific Officer of the University Medical Center, the EU is well advised to fund projects like BlueGenics: "We are practically just at the beginning to exploit marine resources, especially those from the little-explored deep sea, for biomedical purposes. However, it is now already foreseeable that research on deep-sea organisms is likely to produce remarkable results for our society."

BLUE BIOTECHNOLOGY
The so-called Blue Biotechnology is primarily concerned with the biotechnological use of marine organisms. Of particular interest are sponges and deep-sea bacteria that live under extreme conditions in more than 1,000 meters below the sea level. These organisms are considered to be a source of novel valuable substances that can be used in biotechnology and biomedicine. While the majority of the known enzymes break down on exposure to high temperatures, the biocatalysts produced by deep-sea bacteria remain active under extreme conditions, even in the vicinity of marine hydrothermal vents.

What makes blue technology so interesting for research is the fact that even obviously simple organisms, such as marine sponges, are remarkably similar to humans in many ways. The evolutionary relationship between these oldest animals and human beings is surprisingly close, as the Mainz research team has demonstrated in recent years by means of molecular biological techniques. In addition, these organisms produce a variety of substances that have evolved a high degree of specificity and effectiveness during the course of evolution, and hence have attracted increasing interest with regard to their possible therapeutic use in humans, for example for the treatment of viral infections.

Contact
Professor Dr. Werner E.G. Müller
Institute of Physiological Chemistry, Mainz University Medical Center
phone +49 6131 39-25910, fax +49 6131 39-25243, e-mail: wmueller@uni-mainz.de

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/15944_ENG_HTML.php
http://www.uni-mainz.de/magazin/874_ENG_HTML.php

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>