Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Latest genomic studies shed new light on maize diversity and evolution

04.06.2012
2 separate studies published online in the same issue of Nature Genetics
Shenzhen, China ¨C BGI, the world's largest genomics organization, together with other 17 international institutes, announced that they completed the second generation of maize HapMap (Maize HapMap2) and genomics studies on maize domestication and improvement. The two separate studies were published online in the same issue of Nature Genetics.

The studies mark an important milestone in Maize (Zeamays) genomics research, providing an unprecedented glimpse into maize's 'wonderful diversity' and revealing new insights into the evolutionary history of maize genome. These studies will provide valuable insights for botanists and breeders worldwide and facilitate the genetic engineering of this vital cereal crop in the world.
In addition to BGI, the other collaborative organizations include U.S. Department of Agriculture (USDA), Cold Spring Harbor Laboratory, University of California Davis, Cornell University, the International Maize and Wheat Improvement Center (CIMMYT), and others.

Characterizing Maize's Impressive Diversity
Maize's impressive diversity has been attracting much attention in the academic community and agricultural sector. However, characterizing this diversity- in particular at high levels- has been technically challenging. In this study, researchers developed a novel population-genetics scoring model for comprehensively characterizing the genetic variations, including single nucleotide polymorphisms (SNPs), small insertion-deletions, and structural variations (SVs). Through the comprehensive analysis, about 55 million SNPs were identified across 103 inbred lines of wild and domesticated maize. They also found that SVs were prevalent throughout the maize genome and were associated with some important agronomic traits, such as those involved in leaf development and disease resistance.
The researchers also investigated the major factors that influence the maize genome size. The results showed the genome size variations between maize and Gama grass (Tripsacum dactyloides), maize's sister genus, are mostly driven by the abundance of transposable elements (TE). In contrast with the fact that the intra-species genome size variation is influenced by the DNA structure known aschromosomal knobs. In addition to the differences, there is tremendous unity of gene content between maize relatives, suggesting that the adaptations, such as frost and drought tolerance, amongst all of maize's relatives are likely integratable in maize.

Tracing Maize's Evolution and Improvement

Since maize was domesticated approximately 10,000 year ago, its wild progenitor went through a particular transformation that had radically altered maize's wild species to meet human's needs. To comprehensively trace maize's evolution process, researchers sequenced 75 wild, landrace and modern maize lines. Through the comparative population genomics analysis, they found the evidence of new genetic diversity that has arisen since domestication, maybe due to the introgression from wild relatives. They also identified a number of genes that obviously had played important roles in the transition from wild to domesticated maize.

More importantly, the results demonstrated that the selection applied by ancient farmers seemed to play a stronger impact on maize evolution than the breeding techniques adopted by modern breeders. Hybridization in agriculture is vitally important to maintain genetic diversity, and sustains the quality and yield of a crop. In this study, researchers found that many of the changes in the patterns of gene expression had been concentrated in the genes selected for heterosis by modern breeding techniques. These findings suggest that modern breeders should devote more efforts to make effective improvement on candidates by introducing more diversity at the regions linked with selection.

Dr. Xun Xu, Deputy Director of BGI, said, "Genetic improvement of crops is the key output of breeding research. The two studies provide a new way to comprehensively understand maize's genetic diversity and evolutionary history as well as offer an invaluable guidance for botanists and breeders to improve this vital crop."

Dr. Gengyun Zhang, Vice President of BGI, said, "Maize is one of the world's most important crops. The two studies will provide a valuable foundation for accelerating the improvement of maize towards meeting the world's increasing demands for food, livestock feed and biofuel. We look forward to achieve more breakthrough for solving the food security challenges and environmental problems in the near future."
About BGI

BGI was founded in Beijing, China, in 1999 with the mission to become a premier scientific partner for the global research community. The goal of BGI is to make leading-edge genomic science highly accessible, which it achieves through its investment in infrastructure, leveraging the best available technology, economies of scale and expert bioinformatics resources. BGI, and its affiliates¡ªBGI Americas, headquartered in Cambridge, MA, and BGI Europe, headquartered in Copenhagen, Denmark¡ªhave established partnerships and collaborations with leading academic and government research institutions as well as global biotechnology and pharmaceutical companies, supporting a variety of disease, agricultural, environmental and related applications.

BGI has a proven track record of excellence, delivering results with high efficiency and accuracy for innovative, high-profile research; research that has generated over 170 publications in top-tier journals such as Nature and Science. BGI's many accomplishments include: sequencing one percent of the human genome for the International Human Genome Project, contributing 10 percent to the International Human HapMap Project, carrying out research to combat SARS and German deadly E. coli, playing a key role in the Sino-British Chicken Genome Project, and completing the sequence of the rice genome, the silkworm genome, the first Asian diploid genome, the potato genome, and, more recently, have sequenced the human Gut Metagenome and a significant proportion of the genomes for the 1000 Genomes Project.

For more information about BGI, please visit www.genomics.cn

Media Contacts£º

Gengyun Zhang
Vice President of BGI
zhanggengyun@genomics.cn
Xun Xu
Deputy Director of BGI
xuxun@genomics.cn
Bicheng Yang
Public Communication Officer
+86-755-82639701
yangbicheng@genomics.cn

Jia Liu | EurekAlert!
Further information:
http://www.genomics.cn

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>