Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser pulses reveal DNA repair mechanisms

12.08.2013
A new straightforward method enables monitoring the response of nuclear proteins to DNA damage in time and space. The approach is based on nonlinear photoperturbation.

Understanding the cellular response to DNA strand breaks is crucial to decipher the mechanisms maintaining the integrity of our genome. In eukaryotic cells, the molecular events triggered by DNA damage are strongly influenced by the local chromatin environment surrounding the lesion. The ensuing DNA repair process, in turn, impacts on chromatin structure.



In order to understand how these two fundamental processes are mutually connected, both chromatin rearrangements induced by DNA damage as well as DNA repair activity have to be visualized in living cells.

Elisa Ferrando-May and a team from University of Konstanz now present a novel method to visualize how the mobility of nuclear proteins changes in response to localized DNA damage. Their new approach enables to inflict DNA damage without interfering with a subsequent mobility measurement by fluorescence photoactivation.

It is based on nonlinear photoperturbation using infrared femtosecond (fs) laser pulses. The assay detects how the dynamics of nuclear proteins is affected by localized DNA strand breaks, irrespective of their recruitment behavior.

The scientists induce DNA strand breaks via nonlinear excitation with fs laser pulses at 1050 nm in a 3D-confined subnuclear volume. After a time delay of choice, they analyze protein mobility within this volume by two-photon photoactivation of PA-GFP fusion proteins at 775 nm. The time delay can be chosen freely permitting to probe protein mobilities at different subsequent stages of the DNA damage response.

By changing the position of the photoactivation spot with respect to the zone of lesion the influence of chromatin structure and of the distance from damage can be investigated. Due to the local confinement of multiphoton absorption it is possible to examine spatially distinct subnuclear areas, such as eu- and heterochromatin.

As first applications, the scientists demonstrated a locally confined, time-dependent mobility increase of histone H1.2, and a progressive retardation of the DNA repair factor XRCC1 at damaged sites. (Text contributed by K. Maedefessel-Herrmann)

M. Tomas, P. Blumhardt, A. Deutzmann, T. Schwarz, D. Kromm, A. Leitenstorfer, E. Ferrando-May, Imaging of the DNA damage-induced dynamics of nuclear proteins via nonlinear photoperturbation, J. Biophotonics 6(8), 645-655 (2013); doi: http://dx.doi.org/10.1002/jbio.201200170

Regina Hagen
Journal Publishing Manager, Journal of Biophotonics
Managing Editor, Physical Sciences
Global Research
Wiley-VCH Verlag GmbH & Co. KGaA
Rotherstrasse 21
10245 Berlin
Germany
T +49 (0)30 47 031 321
F +49 (0)30 47 031 399
jbp@wiley.com

Regina Hagen | Wiley-VCH
Further information:
http://www.wiley.com
http://www.wileyonlinelibrary.com
http://www.biophotonics-journal.org

Further reports about: Biophotonics DNA DNA damage DNA repair DNA strand laser pulses laser system living cell

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>