Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser propelled cells

02.10.2013
A new tool enables biomechanical studies of individual cells: Red blood cells were laser-propelled over long distances through optofluidic photonic crystal fibers and their deformation due to shear forces monitored.

More than 40 years ago, the foundation for optical tweezers was laid when Arthur Ashkin demonstrated that near the focus of a laser beam, momentum transfer between light and dielectric particles creates gradient forces large enough to pull the particle into the center of highest intensity and scattering forces that push it in the propagation direction of the beam.



Optical trapping of microparticles and cells can be established either by balancing the axial forces of two weakly-focused counter-propagating beams or by using a single tightly focused laser beam. These optical tweezers have developed into an important tool in cell biological research. Optical tweezers can be used not only to fix cells during manipulation but also to investigate the interconnection of a cell’s elasticity to its physiology: healthy and diseased cells differ notably in their mechanical responses, prominent examples being blood disorders, asthma and cancer.

Researchers from Max Planck Institute for the Science of Light, Erlangen, Germany now report a new tool for biomechanical studies of individual cells: Single red blood cells were laser-propelled through stationary liquid in a microfluidic channel over distances of up to 24 cm. Shear forces on the cell surface result in its deformation. This causes changes in speed that can conveniently be monitored using a non-imaging laser Doppler-velocimetric technique. Numerical simulations allowed the scientists to derive the optical force acting on different cell shapes.

The unique method is based on a liquid-filled hollow-core photonic crystal fiber which provides low-loss light guidance in a well-defined single mode, resulting in highly uniform optical trapping and propulsive forces in the core which at the same time acts as a microfluidic channel. Cells are trapped laterally at the center of the core, several microns away from the glass interface, which eliminates adherence effects and external perturbations.

Dynamic changes in velocity at constant optical powers up to 350 mW indicated stress-induced changes in the shape of the cells, which was confirmed by bright-field microscopy. The deformations in the moving cells were not only due to heating. Even at moderate temperature, notable deformations could be detected, especially for osmotically swollen red blood cells.

Interestingly, the deformations occur over timescales of minutes which is rather slow compared to other cell rheological techniques. Re-arrangements of the cytoskeleton might be involved.

The scientists are currently aiming at studying suspended eukaryotic (cancer) cells. These cells are typically ellipsoidal in shape and more rigid than red blood cells, which prevents them from undergoing peculiar changes in shape.

Simulations of the optical forces would be possible, allowing for a complete theoretical analysis of the system. Beyond that, the method may find applications in on-chip cell transport. Cells might be held stationary against a mild counterflow carrying precise amounts of medical drugs.

Moreover, cell-cell interactions between suspended cells might be studied. (Text contributed by K. Maedefessel-Herrmann)

Unterkofler, S., et al; J. Biophotonics 6(9), 743-752 (2013); DOI http://dx.doi.org/10.1002/jbio.201200180

Journal of Biophotonics publishes cutting edge research on interactions between light and biological material. The journal is highly interdisciplinary, covering research in the fields of physics, chemistry, biology and medicine. The scope extends from basic research to clinical applications. Connecting scientists who try to understand basic biological processes using light as a diagnostic and therapeutic tool, the journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for diagnosis of diseases. JBP offers fast publication times: down to 20 days from acceptance to publication. Latest Journal Impact Factor (2012): 3.099 (ISI Journal Citation Reports 2012)

Regina Hagen
Journal Publishing Manager, Journal of Biophotonics
Managing Editor, Physical Sciences
Global Research
Wiley-VCH Verlag GmbH & Co. KGaA
Rotherstrasse 21
10245 Berlin
Germany
T +49 (0)30 47 031 321
F +49 (0)30 47 031 399
jbp@wiley.com
www.biophotonics-journal.org
www.wileyonlinelibrary.com

Regina Hagen | Wiley-VCH
Further information:
http://www.wiley.com

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>