Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lariats: How RNA splicing decisions are made

18.06.2012
Tiny, transient loops of genetic material, detected and studied by the hundreds for the first time at Brown University, are providing new insights into how the body transcribes DNA and splices (or missplices) those transcripts into the instructions needed for making proteins.

The lasso-shaped genetic snippets — they are called lariats — that the Brown team reports studying in the June 17 edition of Nature Structural & Molecular Biology are byproducts of gene transcription. Until now scientists had found fewer than 100 lariats, mostly by poring over very small selections of introns, which are sections of genetic code that do not directly code for proteins, but contain important signals that direct the way protein-coding regions are assembled. In the new study, Brown biologists report that they found more than 800 lariats in a publicly available set of billions of RNA reads derived from human tissues.

"We used modern genomic methods, deep sequencers, to detect these rare intermediates of splicing," said William Fairbrother, associate professor of biology and senior author of the study. "It's the first ever report of these things being discovered at a genome scale in living cells, and it tells us a lot about this step of gene processing."

That specific step is known as RNA splicing. Like film editors splicing together movie scenes, enzymes cut away the introns to assemble exons that instruct a cell's ribosome to make proteins. The body often has a choice of ways and places to make those cuts. Most of what is known about splicing has come from studying these spliced instructions, said Allison Taggart, a graduate student who is lead author of the study. What's been missing is the data hidden in the lariats, which fall apart shortly after being spliced out, but turn out to predict the body's splicing choices.

Modeling splicing

The key information uncovered in the study, Taggart said, is the location of so-called "branchpoints" on the lariats. Physically, the branchpoint is where the lariat closes on itself to form a loop during the first step of splicing, but its position and proximity to possible splice sites, the researchers learned, reliably relate to where splicing will occur.

After studying the sites of these branchpoints and their relationship to splice sites, the researchers created an algorithmic model that could predict splice sites 95.6 percent of the time. The value of the model is not in identifying splice sites — those are already well known, Fairbrother said. Instead, the model's accuracy shows that, with the new data from the lariats, scientists have gained a more general understanding of how the body chooses among alternative splicing sites.

"What it does tell us is sets of rules defining the relationship between branchpoints and the chosen splice sites, which gives clues about how the splicing machinery makes decisions," Taggart said. "Certain branchpoint locations can enforce specific splicing isoforms."

Connections to disease

In addition to ferreting out the mechanisms of alternative splicing, the team also studied the connection between branchpoints and disease. They looked through the Human Gene Mutation Database for disease-causing mutations found in introns and compared their newly found branchpoint sequences to those mutations. They found that many relate specifically to branchpoints.

"We saw a sequence motif that looked exactly like a branchpoint sequence motif," she said. "What this tells us is that these mutations are forming at branchpoints and are leading to disease, presumably through causing aberrant splicing by interfering with lariat formation."

In other words, Fairbrother said, it could well be that a consequence of mutations in branchpoints could be disease.

In addition to Taggart and Fairbrother, other authors include Alec DeSimone, Janice Shih, and Madeleine Filloux.

The National Science Foundation and Brown University funded the research, which was performed in part on the OSCAR supercomputing cluster at the University's Center for Computation and Visualization.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

Further reports about: Lariats Little Brown Bats RNA human tissue living cell

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>