Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Largest ever genetic study of liver function could point the way to new treatments

17.10.2011
Researchers have identified a large number of areas in the human genetic code that are involved in regulating the way in which the liver functions, in a new study of over 61,000 people, published today in the journal Nature Genetics.

The work is an international collaboration led by Imperial College London and it identifies 42 genetic regions associated with liver function, 32 of which had not been linked to liver function before.

The work should lead to a better understanding of precisely what goes wrong when the liver ceases to work normally. Ultimately, it could point the way to new treatments that can improve the function of the liver and help to prevent liver damage.

The liver is the body's largest internal organ and the British Liver Trust estimates that around two million people in the UK have a liver problem at any one time. The liver carries out hundreds of different tasks, including making proteins and blood clotting factors, and helping with digestion and energy release. It also purifies the blood of bacteria, and of the by-products of digestion, alcohol and drugs.

In the new genome-wide association study, the researchers compared the genetic makeup of over 61,000 people, in order to identify areas of the genetic code that were associated with liver function.

The team assessed the function of the volunteers' livers by looking at the concentrations of liver enzymes in their blood. People who have liver damage have high concentrations of these enzymes, which are associated with an increased risk of conditions such as cirrhosis, type 2 diabetes and cardiovascular disease.

Dr John Chambers, the lead author of the study from the School of Public Health at Imperial College London, said: "The liver is a central hub in the body and because it has so many diverse functions, it is linked to a large number of conditions. Our new study is a big step towards understanding the role that different genes play in keeping the liver working normally, and towards identifying targets for drugs that can help prevent the liver from functioning abnormally or becoming susceptible to disease."

The researchers identified 42 areas on the genetic code associated with liver function and they then went on to pinpoint 69 associated genes within these areas. Some of the genes are known to play a part in other functions in the body, including inflammation and immunity, and metabolising glucose and carbohydrates.

Professor Jaspal S Kooner, the senior author of the study from the National Heart and Lung Institute at Imperial College London, said: "This massive international research effort provides in-depth new knowledge about the genes regulating the liver. We are particularly excited about the genes whose precise role we don't yet know. Investigating these further should help us to fill in the gaps in our understanding about what happens when the liver ceases to function normally and how we might be able to tackle this."

Professor Paul Elliott, also a senior author of the study, from the School of Public Health at Imperial College London, said: "Liver problems affect a huge number of people and they can have a devastating effect on a person's quality of life. This study represents a vast discovery that opens up multiple new avenues for research."

The research was funded by the Imperial Comprehensive Biomedical Research Centre award from the National Institute for Health Research; the Medical Research Council; the Wellcome Trust; and other sources.

Laura Gallagher | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>