Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Larger female hyenas produce more offspring

24.03.2011
When it comes to producing more offspring, larger female hyenas outdo their smaller counterparts.

A new study by Michigan State University researchers, which appears in Proceedings of the Royal Society, revealed this as well as defined a new way to measure spotted hyenas’ size.

“This is the first study of its kind that provides an estimate of lifetime selection on a large carnivore,” said MSU graduate student Eli Swanson, who published the paper with MSU faculty members Ian Dworkin and Kay Holekamp, all members of the BEACON Center for the Study of Evolution in Action. “In short, we were able to document that larger female hyenas have more cubs over their lifetime than do smaller females as well as develop a novel approach for estimating body size.”

Size can be one of the most important traits affecting an animal’s life. It influences eating, getting eaten, speed and agility, and attractiveness to potential mates. However, overall height and weight measurements may not capture differences in more specific traits like leg length that might be more important in survival.

To identify the most-important traits, researchers sedated hyenas in Kenya and took 13 measurements on each subject, including total body length, skull size and leg length. They found that while overall size didn’t affect reproductive success, some clusters of traits did. They also learned that the length of the lower leg, the height at the shoulder and body length were all individually associated with more reproductive success.

“Our results highlight the importance of choosing appropriate measures when estimating animal body size,” Swanson said. “They also suggest researchers should take caution in interpreting selection on size-related traits as selection on size itself.”

Spotted hyenas are particularly interesting because females are larger than males, which is extremely unusual among mammals. In most mammals, the size difference is easy to explain. Larger males get more food and attract more females, but females are faced with a tradeoff between their own body size and the energy needed for pregnancy and lactation. As of yet, the size difference between the sexes is still unsolved.

However, researchers have been able to shed light on the reasons for the large females’ success. They found that larger females reproduce more often and live longer after beginning to reproduce, when compared to smaller females.

Estimating fitness — or success at surviving and reproducing — can be difficult with spotted hyenas, which can live at least 19 years in the wild. Since Holekamp’s field study of spotted hyenas has been ongoing for more than 20 years, the researchers were able to count the number of surviving offspring produced by a female in her lifetime, as well as the length of her total reproductive lifespan.

BEACON is an NSF-funded Science and Technology Center headquartered at MSU, with partners at North Carolina A&T State University, University of Idaho, University of Texas at Austin, and University of Washington.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world’s most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Layne Cameron | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>