Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Language driven by culture, not biology

20.01.2009
Language in humans has evolved culturally rather than genetically, according to a study by UCL (University College London) and US researchers.

By modelling the ways in which genes for language might have evolved alongside language itself, the study showed that genetic adaptation to language would be highly unlikely, as cultural conventions change much more rapidly than genes. Thus, the biological machinery upon which human language is built appears to predate the emergence of language.

According to a phenomenon known as the Baldwin effect, characteristics that are learned or developed over a lifespan may become gradually encoded in the genome over many generations, because organisms with a stronger predisposition to acquire a trait have a selective advantage. Over generations, the amount of environmental exposure required to develop the trait decreases, and eventually no environmental exposure may be needed - the trait is genetically encoded.

An example of the Baldwin effect is the development of calluses on the keels and sterna of ostriches. The calluses may initially have developed in response to abrasion where the keel and sterna touch the ground during sitting. Natural selection then favored individuals that could develop calluses more rapidly, until callus development became triggered within the embryo and could occur without environmental stimulation. The PNAS paper explored circumstances under which a similar evolutionary mechanism could genetically assimilate properties of language – a theory that has been widely favoured by those arguing for the existence of ‘language genes’.

The study modelled ways in which genes encoding language-specific properties could have coevolved with language itself. The key finding was that genes for language could have coevolved only in a highly stable linguistic environment; a rapidly changing linguistic environment would not provide a stable target for natural selection. Thus, a biological endowment could not coevolve with properties of language that began as learned cultural conventions, because cultural conventions change much more rapidly than genes.

The authors conclude that it is unlikely that humans possess a genetic ‘language module’ which has evolved by natural selection. The genetic basis of human language appears to primarily predate the emergence of language.

The conclusion is reinforced by the observation that had such adaptation occurred in the human lineage, these processes would have operated independently on modern human populations as they spread throughout Africa and the rest of the world over the last 100,000 years. If this were so, genetic populations should have coevolved with their own language groups, leading to divergent and mutually incompatible language modules. Linguists have found no evidence of this, however; for example, native Australasian populations have been largely isolated for 50,000 years but learn European languages readily.

Professor Nick Chater, UCL Cognitive, Perceptual and Brain Sciences, says: “Language is uniquely human. But does this uniqueness stem from biology or culture? This question is central to our understanding of what it is to be human, and has fundamental implications for the relationship between genes and culture. Our paper uncovers a paradox at the heart of theories about the evolutionary origin and genetic basis of human language – although we have appear to have a genetic predisposition towards language, human language has evolved far more quickly than our genes could keep up with, suggesting that language is shaped and driven by culture rather than biology.

“The linguistic environment is continually changing; indeed, linguistic change is vastly more rapid than genetic change. For example, the entire Indo-European language group has diverged in less than 10,000 years. Our simulations show the evolutionary impact of such rapid linguistic change: genes cannot evolve fast enough to keep up with this ‘moving target’.

“Of course, co-evolution between genes and culture can occur. For example, lactose tolerance appears to have co-evolved with dairying. But dairying involves a stable change to the nutritional environment, positively selecting the gene for lactose tolerance, unlike the fast-changing linguistic environment. Our simulations show that this kind of co-evolution can only occur when language change is offset by very strong genetic pressure. Under these conditions of extreme pressure, language rapidly evolves to reflect pre-existing biases, whether the genes are subject to natural selection or not. Thus, co-evolution only occurs when the language is already almost entirely genetically encoded. We conclude that slow-changing genes can drive the structure of a fast-changing language, but not the reverse.

“But if universal grammar did not evolve by natural selection, how could it have arisen? Our findings suggest that language must be a culturally evolved system, not a product of biological adaption. This is consistent with current theories that language arose from the unique human capacity for social intelligence.”

Jenny Gimpel | alfa
Further information:
http://www.ucl.ac.uk

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>