Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landmark Study Unlocks Stem Cell, DNA Secrets to Speed Therapies

14.10.2008
In a groundbreaking study led by an eminent molecular biologist at Florida State University, researchers have discovered that as embryonic stem cells turn into different cell types, there are dramatic corresponding changes to the order in which DNA is replicated and reorganized.

The findings bridge a critical knowledge gap for stem cell biologists, enabling them to better understand the enormously complex process by which DNA is repackaged during differentiation -- when embryonic stem cells, jacks of all cellular trades, lose their anything-goes attitude and become masters of specialized functions.

As a result, scientists now are one significant step closer to the central goal of stem cell therapy, which is to successfully convert adult tissue back to an embryo-like state so that it can be used to regenerate or replace damaged tissue. Such therapies hold out hope of treatments or cures for cancer, Parkinson’s disease, multiple sclerosis, spinal cord injuries and a host of other devastating disorders.

Using mouse and human embryonic stem cells, FSU researchers employed advanced imaging techniques and state-of-the-art genomics technology to demonstrate, with unprecedented resolution along long stretches of chromosomes, which sequences are replicated first, and which occur later in the process of differentiation.

“Understanding how replication works during embryonic stem cell differentiation gives us a molecular handle on how information is packaged in different types of cells in manners characteristic to each cell type,” said David M. Gilbert, the study’s principal investigator. “That handle will help us reverse the process in order to engineer different types of cells for use in disease therapies.” Internationally renowned for his body of cutting-edge research on chromosomal structure and reproduction that he began as a doctoral student at Stanford University in the 1980’s, Gilbert joined the FSU faculty and was appointed as the first J. Herbert Taylor Distinguished Professor of Molecular Biology in 2006.

Results from the FSU study, which includes contributions from researchers at three other institutions, are described in a paper published in the October 7, 2008, edition of PLoS (Public Library of Science) Biology, a peer-reviewed journal that showcases biological science research of exceptional significance. So prodigious were the findings that the current paper -- “Global Reorganization of Replication Domains During Embryonic Stem Cell Differentiation” -- is focused solely on results observed in the mouse embryonic stems cells; data on the human cells will be detailed in a future report.

“We know that all the information (DNA) required to take on the identity of any tissue type is present in every cell, because we already can, albeit very inefficiently, create whole animals from adult tissue through cloning,” Gilbert said. “We also can make a kind of artificial embryonic stem cells, called induced pluripotent stem cells, out of many adult cell types, but there are two major hurdles remaining. First, the methods currently used rely on the unnatural retroviral insertion of genes into patients’ cells, and these genes are capable of forming tumors. Second, this method is very inefficient as well because only one in 1,000 cells into which the genes are inserted becomes pluripotent. We must learn how cells lose pluripotency in the first place so we can do a better job of reversing the process without risks to patients.

“The challenge is, adult cells are highly specialized and over the course of their family history over many generations they’ve made decisions to be certain cell types rather than others,” he said. “In doing so, they have tucked away the information they no longer need on how to become other cell types. Hence, all cells contain the same genetic information in their DNA, but during differentiation they package it with proteins into ‘chromatin’ in characteristic ways that define each cell type. The rules that determine how cells package DNA are complicated and have been difficult for scientists to decipher.”

But, Gilbert noted, one time that the cell “shows its cards” is during DNA replication.

“During this process, which was the focus of our FSU research, it’s not just the DNA that replicates,” he said. “All the packaging must be replicated as well in each cell division cycle.”

He explained that embryonic stem cells have many more, smaller “domains” of organization than differentiated cells, and it is during differentiation that they consolidate information.

“In fact, ‘domain consolidation’ is what we call the novel concept we discovered,” he said.

Gilbert likened the concept of domain consolidation to the undeclared or “undifferentiated” college student who then consolidates her literature resources during the course of declaring a major and specialization. “From a student with books on all subjects on all of her bookshelves comes a student who has placed all texts pertaining to her major on the eye-level shelf and moved the distantly-related, potentially distracting texts to the hard-to-reach bottom or top shelves,” he said.

“Now, our challenge as scientists,” said Gilbert, “is to build on what we’ve learned about domain consolidation so that we can efficiently and safely create patient-specific induced pluripotent stem cells or even coax the body’s cells to change their specialization in response to medications.”

Funding for the study came largely from grants awarded to Gilbert from the National Institutes of Health. To access a copy of the paper on the PLoS Biology Web site, go to http://biology.plosjournals.org/perlserv/?request=index-html&issn=1545-7885. Learn more about Gilbert’s research achievements at http://gilbertlab.bio.fsu.edu/.

Paper co-authors from the FSU Department of Biological Science include postdoctoral assistants Ichiro Hiratani and Tomoki Yokochi and doctoral student Tyrone Ryba. Contributions also came from researchers at the Friedrich Miescher Institute for Biomedical Research in Basel, Switzerland; the University of Alabama at Birmingham Schools of Medicine and Dentistry; and the State University of New York, Upstate Medical University, Syracuse.

David M. Gilbert | Newswise Science News
Further information:
http://www.fsu.edu

Further reports about: Biology DNA Embryonic FSU Landmark PLoS Researchers Tissue cell types embryonic stem embryonic stem cells stem cells

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>