Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landmark study sheds new light on human chromosomal birth defects

21.09.2009
Using yeast genetics and a novel scheme to selectively remove a single protein from the cell division process called meiosis, a cell biologist at The Florida State University found that when a key molecular player known as Pds5 goes missing, chromosomes fail to segregate and pair up properly, and birth defects such as Down syndrome can result.
That discovery is groundbreaking, but so, too, is what principal investigator Hong-Guo Yu calls the "genetics trick" performed by his research team that made the discovery possible. The study shines new light on the protein Pds5, its crucial regulatory role during meiosis, and the impact of its absence on the molecular-level genesis of human chromosomal birth defects that include Down, Edwards, Patau, Turner, Klinefelter's and XYY syndromes.

The findings, which are described in a paper featured in the Journal of Cell Biology http://jcb.rupress.org/cgi/content/full/186/5/713, may contribute to the eventual development of targeted, molecular-level interventions.

Yu, an assistant professor in FSU's Department of Biological Science, explained how the meiotic stage is set and what goes wrong when key elements are rearranged.

"To produce a genetically balanced gamete (sperm and egg), the cell must contend with two sets of chromosome pairs, homologs and sisters," he said. "Homologs are the nearly identical chromosomes inherited from each parent; sisters are exactly identical pairs that are produced like photocopies as part of normal cell division.

"During normal meiosis, the process of division that halves the number of chromosomes per cell, my colleagues and I discovered that Pds5 regulates the pairing and synapsis (joining together) of 'mom and dad' homologs. We also learned that Pds5 plays a vital role in the synaptonemal complex, a glue-like protein structure that homologs use to literally stick together as they pair up. In addition, we found that, although sister chromatids enter meiosis in very close proximity to one another, Pds5 acts to inhibit synapsis between them, a good thing because, then, meiotic conditions support the necessary pairing of homologs."

Consequently, removing Pds5 during meiosis triggers a chromosomal catastrophe.

"In order to observe what happened when the Pds5 went missing from the process, we performed a 'molecular genetics trick' that had never been applied to this particular protein before, and it worked," Yu said. "We successfully engineered yeast cells that shut down Pds5 only during meiosis, but not when they were vegetative."

As a result, Pds5 was no longer present to regulate homolog organization and transmission in the meiotic yeast cells. The synaptonemal complex, which normally would support the synapsis of homologs by creating a sticky bond along their entire length, failed to form. In the meiotic malfunction that followed, the identical sister chromosomes began to synapse instead.

"When Pds5 is removed and sister chromatids become synapsed as a result, the segregation and recombination of homologs essential for genetic diversity fails," Yu said. "This finding is highly important, because failure to generate a crossover between homologs leads to chromosome missegregation and can cause human chromosomal birth defects such as Down syndrome, which affects about one in 800 newborns in the United States."

Yu said the landmark study has significantly extended previous observations of the role of Pds5 in the formation of meiotic chromosome structure.

"Now, we are investigating the other factors that interact with Pds5 during meiosis to regulate chromosome segregation and homolog synapsis," he said. "Long term, we hope to achieve a comprehensive understanding of the molecular mechanisms behind chromosomal birth defects and see our research contribute to the creation of targeted interventions during meiosis."

Currently, Yu's research at Florida State University is supported by a two-year, $150,000 Basil O'Connor Starter Scholar award from the March of Dimes Foundation, and by a three-year, $375,000 Bankhead Coley grant from the Florida Biomedical Research Program.

The Sept. 7, 2009, Journal of Cell Biology paper ("Pds5 is required for homologue pairing and inhibits synapsis of sister chromatids during yeast meiosis") was co-authored by Hui Jin, a research technician in biology at Florida State, and Vincent Guacci, a postdoctoral assistant in the Department of Embryology at the Carnegie Institution of Washington.

Hong-Guo Yu | EurekAlert!
Further information:
http://www.fsu.edu
http://www.fsu.com

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>