Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landing lights for bumblebees

12.10.2010
Gardeners could help maintain bumblebee populations by growing plants with red flowers or flowers with stripes along the veins, according to field observations of the common snapdragon, Antirrhinum majus, at the John Innes Centre in the UK.

Bees are important pollinators of crops as well as the plants in our gardens. The John Innes Centre, an institute of the BBSRC, is committed to research that can benefit agriculture and the environment.

"Stripes following the veins of flowers are one of the most common floral pigmentation patterns so we thought there must be some advantage for pollination," said Professor Cathie Martin from JIC.

Nuffield scholars spent successive summers observing the foraging patterns of bumblebees on snapdragon plants grown on a plot near Norwich. The students compared the number of visits by bumblebees to various cultivars of the common snapdragon and the number of flowers visited per plant. Red flowers and those with venation patterning were visited significantly more frequently than white or pink. More flowers were visited per plant too.

"Stripes provide a visual guide for pollinators, directing them to the central landing platform and the entrance to the flower where the nectar and pollen can be found," said Professor Martin.

"We examined the origin of this trait and found that it has been retained through snapdragon ancestry. The selection pressure for this trait is only relaxed when full red pigmentation evolves in a species."

Bumblebees are the main pollinators for snapdragon because the of the bee is needed to open the closed flower. Pollinators learn and memorize floral signals, such as flower shape, scent, colour and patterns of pigmentation. They return to flowers from which they have previously found food. Simple changes due to single gene changes can have dramatic effects on which pollinators visit and how often.

Collaborators on the project from New Zealand also analysed how the stripy patterns are formed along the veins of the common snapdragon. They showed that two signals interact to create the stripes.

"Complex colour patterns such as spots and stripes are common in nature but the way they are formed is poorly understood," said author Dr Kathy Schwinn from the New Zealand Institute for Plant & Food Research.

"We found that one signal comes from the veins of the petals and one from the skin of the petals, the epidermis. Where these signals intersect, the production of red anthocyanin pigments is induced."

Professor Douglas Kell, Chief Executive of BBSRC, which part-funded this research through strategic funding to JIC, said: "Pollinator insects, such as honeybees, have a highly significant role in agriculture and any reduction in numbers is economically damaging and risks our food security. Much of the food on our plates is reliant on insect pollination. BBSRC is investing in research to understand how we can arrest pollinator decline and this study shows how horticulturalists and gardeners can encourage bumblebee populations."

Andrew Chapple | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>