Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lactic bacteria fermentation for reducing the need for additives

15.03.2010
More organic, tasty bread with VTT’s method

VTT has developed a method whereby the use of additives in bread can be reduced significantly. At the same time, the taste and lightness of wheat bread made using sourdough, and keeping it soft without chemical additives, can be greatly improved.

The method is based on lactic bacteria, which produce hydrocolloids during the sourdough fermentation and which are useful in terms of baking technology. VTT identified the useful lactic bacteria in a survey in which over 100 cereal and food-based microbes were screened. Corresponding safe microbes, i.e. starters, are used in making yoghurt and sour whole milk, for instance.

Baking tests demonstrated that the hydrocolloids produced in sourdough facilitated the mechanical processability of the dough, improved the shelf life of wheat bread and increased its volume. The quality of the bread was even better than that of ordinary leavened bread: the taste was mild and there was no strong pungeant taste typical of bread made from sourdough.

Starters are used in the production of foods in which fermentation is one of the manufacturing stages. They offer a wealth of opportunities for shaping the structure, taste, healthiness and safety of the product. VTT’s research focused on starter populations that under suitable conditions generate hydrocolloids, and saccharates that gel, i.e. exo-polysaccharides. These are used as food coagulants and emulsifiers, sources of fibre, fat substitutes and bread improvers, for example. Their use is indicated by an E code on packages.

The production of hydrocolloids in the sourdough improves the already known positive effects of sourdough fermentation in baking. The technology offers opportunities for making increasingly organic bread, enabling the use of E-coded additives, such as refined hydrocolloids, to be reduced considerably or replaced altogether.

Even the use of ordinary sourdough usually improves the nutritional qualities of wheat bread e.g. by slowing down the digestion of wheat bread (low glycaemic index) and raising bread folate concentrations. The production of hydrocolloids in the sourdough makes it possible to greatly enhance the health-promoting effects of sourdough.

The technology also offers opportunities for producing ingredients for making new types of cereal products and foods. In addition to bakeries, the technology can be utilised by starter producers and other food industries.

The new technology was generated in a project entitled Tailor-Made Sourdough Fermentation for the Improvement of the Structural and Nutritional Properties of Cereal Products, which was conducted together with the University of Helsinki and the Finnish bakery industry. The main financiers were the Finnish Funding Agency for Technology and Innovation Tekes, and VTT.

Additional information:

VTT Technical Research Centre of Finland
Senior Research Scientist
Kati Katina
tel. 020 722 5184
kati.katina@vtt.fi
Further information on VTT:
Sakari Sohlberg
Chief Information Officer
Tel. 020 722 6744
sakari.sohlberg@vtt.fi

Sakari Sohlberg | VTT info
Further information:
http://www.vtt.fi

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>