Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lack of "Happiness Hormone" Serotonin in the Brain Causes Impaired Maternal Behavior in Mice

23.06.2009
A lack of serotonin, commonly known as the "happiness hormone", in the brain slows the growth of mice after birth and is responsible for impaired maternal behavior later in life.

This was the result of research conducted by Dr. Natalia Alenina, Dana Kikic, and Professor Michael Bader of the Max Delbrück Center (MDC) Berlin-Buch, Germany. They also discovered that the presence of serotonin in the brain is not crucial for the survival of the animals.

Furthermore, they were able to confirm that there are two strictly separate pathways of serotonin production: One gene is responsible for the formation of serotonin in the brain, another gene for the production of the hormone in the body (PNAS)*.

The researchers "switched off" the gene Tph2 in mice to elucidate the function of the gene in the brain. Tph2 produces the enzyme tryptophan hydroxylase (TPH), which is responsible for the formation of serotonin.

After the researchers switched off Tph2, the animals produced almost no serotonin in the brain. Nevertheless, the animals were viable and half of them survived until adulthood. However, they needed more sleep during the day and the regulation of their respiration, body temperature, and blood pressure was altered.

The female mice were able to give birth and produced enough milk to feed their pups, but their impaired maternal behavior led to poor survival of the offspring.

The Tph2 gene was discovered by MDC researchers several years ago together with researchers of the Free University (FU) Berlin and Humboldt University Berlin (HUB).

A photo can be downloaded from the Internet at:
http://www.mdc-berlin.de/en/news/2009/index.html
Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

Further reports about: Brain Hormon Lack MDC Mice Serotonin Tph2 blood pressure body temperature enzyme maternal respiration tryptophan hydroxylase

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>