Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lack of "Happiness Hormone" Serotonin in the Brain Causes Impaired Maternal Behavior in Mice

23.06.2009
A lack of serotonin, commonly known as the "happiness hormone", in the brain slows the growth of mice after birth and is responsible for impaired maternal behavior later in life.

This was the result of research conducted by Dr. Natalia Alenina, Dana Kikic, and Professor Michael Bader of the Max Delbrück Center (MDC) Berlin-Buch, Germany. They also discovered that the presence of serotonin in the brain is not crucial for the survival of the animals.

Furthermore, they were able to confirm that there are two strictly separate pathways of serotonin production: One gene is responsible for the formation of serotonin in the brain, another gene for the production of the hormone in the body (PNAS)*.

The researchers "switched off" the gene Tph2 in mice to elucidate the function of the gene in the brain. Tph2 produces the enzyme tryptophan hydroxylase (TPH), which is responsible for the formation of serotonin.

After the researchers switched off Tph2, the animals produced almost no serotonin in the brain. Nevertheless, the animals were viable and half of them survived until adulthood. However, they needed more sleep during the day and the regulation of their respiration, body temperature, and blood pressure was altered.

The female mice were able to give birth and produced enough milk to feed their pups, but their impaired maternal behavior led to poor survival of the offspring.

The Tph2 gene was discovered by MDC researchers several years ago together with researchers of the Free University (FU) Berlin and Humboldt University Berlin (HUB).

A photo can be downloaded from the Internet at:
http://www.mdc-berlin.de/en/news/2009/index.html
Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

Further reports about: Brain Hormon Lack MDC Mice Serotonin Tph2 blood pressure body temperature enzyme maternal respiration tryptophan hydroxylase

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>