Lack of "Happiness Hormone" Serotonin in the Brain Causes Impaired Maternal Behavior in Mice

This was the result of research conducted by Dr. Natalia Alenina, Dana Kikic, and Professor Michael Bader of the Max Delbrück Center (MDC) Berlin-Buch, Germany. They also discovered that the presence of serotonin in the brain is not crucial for the survival of the animals.

Furthermore, they were able to confirm that there are two strictly separate pathways of serotonin production: One gene is responsible for the formation of serotonin in the brain, another gene for the production of the hormone in the body (PNAS)*.

The researchers “switched off” the gene Tph2 in mice to elucidate the function of the gene in the brain. Tph2 produces the enzyme tryptophan hydroxylase (TPH), which is responsible for the formation of serotonin.

After the researchers switched off Tph2, the animals produced almost no serotonin in the brain. Nevertheless, the animals were viable and half of them survived until adulthood. However, they needed more sleep during the day and the regulation of their respiration, body temperature, and blood pressure was altered.

The female mice were able to give birth and produced enough milk to feed their pups, but their impaired maternal behavior led to poor survival of the offspring.

The Tph2 gene was discovered by MDC researchers several years ago together with researchers of the Free University (FU) Berlin and Humboldt University Berlin (HUB).

A photo can be downloaded from the Internet at:
http://www.mdc-berlin.de/en/news/2009/index.html
Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 – 38 96
Fax: +49 (0) 30 94 06 – 38 33
e-mail: presse@mdc-berlin.de

Media Contact

Barbara Bachtler Max-Delbrück-Centrum

More Information:

http://www.mdc-berlin.de/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors