Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lack of coronin 1 protein causes learning deficits and aggressive behavior

26.03.2014

Learning and memory relies on the proper processing of signals that stimulate neuronal cells within the brain.

Researchers at the Biozentrum of the University of Basel, together with an international team of scientists, has uncovered an important role for the protein coronin 1 in cognition and behavior.


The absence of coronin 1 in neurons results in severe neurobehavioral defects. Coronin1 (green) in neurons within the amygdala of the brain. Red: neurofilament as neuronal marker; Blue: nuclear stain

Illustration: University of Basel, Biozentrum

They found that a lack of coronin 1 in mouse and in man is associated with poor memory, defective learning and aggressive behavior. The results, recently published in PLOS Biology, identify a novel risk factor for neurobehavioral dysfunction and reveal a molecular pathway involved in transferring information within neurons.

Organisms must be able to sense signals from the outside and translate these into biochemical cues in order to adequately respond to their environment. This capability is also required to process information that reaches the brain. Within the brain, stimulation of neurons activates genes that are required, for example for learning and memory.

... more about:
»Biozentrum »Lack »cAMP »coronin »deficits »lacking »neurons »signals

In collaboration with an international and interdisciplinary team the research group led by Prof. Jean Pieters from the Biozentrum, University of Basel, has now uncovered the role of an evolutionarily conserved protein, called coronin 1, in providing a link between the extracellular stimulus and neuronal activation that ultimately results in efficient learning and memory in both mice and men.

From the immune system to the brain

In earlier work, Pieters’ team discovered the protein coronin 1 as being essential for the proper transduction of signals in immune cells. In mice lacking coronin 1 the researchers further investigated the molecular mechanism. Surprisingly, these mice showed aberrant behavior. In particular, mice lacking coronin 1 appeared to be far more aggressive and display extreme grooming activity, an indication of reduced sociability.

An in-depth analysis in collaboration with scientists from the Friedrich Miescher Institute in Basel and the University of Bordeaux unveiled profound learning and behavioral problems and severe defects in the ability to activate neurons in the absence of coronin 1.

Activation of a signaling cascade

But how does coronin 1 ensure proper neurobehavioral functioning? Normally, stimulation of the cell surface results in an activation of an intracellular cascade of reactions and ultimately stimulates the production of the signaling molecule cAMP which then activates a number of processes, including the transcription of gene involved in neurobehavior. “We found that in the absence of coronin 1, cell surface stimulation leads to a defective cAMP production”, explains Pieters. “This in turn affects the signal transduction which is finally responsible for the deficits in learning and memory formation.”

Of mice and men

Furthermore, the researchers analyzed the clinical history of a patient lacking coronin 1 due to a mutation: it turned out that this patient showed learning defects and aggressive behavior. With this study, Pieters and his project collaborators not only define a crucial role for coronin 1 in cognition and behavior, but also unravel a coronin 1-dependent signaling pathway that may be explored both for potential risk factors as well as future interventions to modulate neurobehavioral dysfunction.

Original article
Rajesh Jayachandran, Xiaolong Liu, Somdeb BoseDasgupta, Philipp Müller, Chun-Lei Zhang, Despina Moshous, Vera Studer, Jacques Schneider, Christel Genoud, Catherine Fassoud, Fréderic Gambino, Malik Khelfaoui, Christian Müller, Deborah Bartholdi, Helene Rossez, Michael Stiess, Xander Houbaert, Rolf Jaussi, Daniel Frey, Richard A. Kammerer, Xavier Deupi, Jean-Pierre de Villartay, Andreas Lüthi, Yann Humeau, and Jean Pieters
Coronin 1 Regulates Cognition and Behavior through Modulation of cAMP/Protein Kinase A Signaling
PLOS Biology, published March 25, 2014 | doi: 10.1371/journal.pbio.1001820

Further information
Prof. Jean Pieters, University of Basel, Biozentrum, phone +41 61 267 14 94, email: jean.pieters@unibas.ch

www.unibas.ch

Katrin Bühler | Universität Basel

Further reports about: Biozentrum Lack cAMP coronin deficits lacking neurons signals

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>