Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lack of coronin 1 protein causes learning deficits and aggressive behavior

26.03.2014

Learning and memory relies on the proper processing of signals that stimulate neuronal cells within the brain.

Researchers at the Biozentrum of the University of Basel, together with an international team of scientists, has uncovered an important role for the protein coronin 1 in cognition and behavior.


The absence of coronin 1 in neurons results in severe neurobehavioral defects. Coronin1 (green) in neurons within the amygdala of the brain. Red: neurofilament as neuronal marker; Blue: nuclear stain

Illustration: University of Basel, Biozentrum

They found that a lack of coronin 1 in mouse and in man is associated with poor memory, defective learning and aggressive behavior. The results, recently published in PLOS Biology, identify a novel risk factor for neurobehavioral dysfunction and reveal a molecular pathway involved in transferring information within neurons.

Organisms must be able to sense signals from the outside and translate these into biochemical cues in order to adequately respond to their environment. This capability is also required to process information that reaches the brain. Within the brain, stimulation of neurons activates genes that are required, for example for learning and memory.

... more about:
»Biozentrum »Lack »cAMP »coronin »deficits »lacking »neurons »signals

In collaboration with an international and interdisciplinary team the research group led by Prof. Jean Pieters from the Biozentrum, University of Basel, has now uncovered the role of an evolutionarily conserved protein, called coronin 1, in providing a link between the extracellular stimulus and neuronal activation that ultimately results in efficient learning and memory in both mice and men.

From the immune system to the brain

In earlier work, Pieters’ team discovered the protein coronin 1 as being essential for the proper transduction of signals in immune cells. In mice lacking coronin 1 the researchers further investigated the molecular mechanism. Surprisingly, these mice showed aberrant behavior. In particular, mice lacking coronin 1 appeared to be far more aggressive and display extreme grooming activity, an indication of reduced sociability.

An in-depth analysis in collaboration with scientists from the Friedrich Miescher Institute in Basel and the University of Bordeaux unveiled profound learning and behavioral problems and severe defects in the ability to activate neurons in the absence of coronin 1.

Activation of a signaling cascade

But how does coronin 1 ensure proper neurobehavioral functioning? Normally, stimulation of the cell surface results in an activation of an intracellular cascade of reactions and ultimately stimulates the production of the signaling molecule cAMP which then activates a number of processes, including the transcription of gene involved in neurobehavior. “We found that in the absence of coronin 1, cell surface stimulation leads to a defective cAMP production”, explains Pieters. “This in turn affects the signal transduction which is finally responsible for the deficits in learning and memory formation.”

Of mice and men

Furthermore, the researchers analyzed the clinical history of a patient lacking coronin 1 due to a mutation: it turned out that this patient showed learning defects and aggressive behavior. With this study, Pieters and his project collaborators not only define a crucial role for coronin 1 in cognition and behavior, but also unravel a coronin 1-dependent signaling pathway that may be explored both for potential risk factors as well as future interventions to modulate neurobehavioral dysfunction.

Original article
Rajesh Jayachandran, Xiaolong Liu, Somdeb BoseDasgupta, Philipp Müller, Chun-Lei Zhang, Despina Moshous, Vera Studer, Jacques Schneider, Christel Genoud, Catherine Fassoud, Fréderic Gambino, Malik Khelfaoui, Christian Müller, Deborah Bartholdi, Helene Rossez, Michael Stiess, Xander Houbaert, Rolf Jaussi, Daniel Frey, Richard A. Kammerer, Xavier Deupi, Jean-Pierre de Villartay, Andreas Lüthi, Yann Humeau, and Jean Pieters
Coronin 1 Regulates Cognition and Behavior through Modulation of cAMP/Protein Kinase A Signaling
PLOS Biology, published March 25, 2014 | doi: 10.1371/journal.pbio.1001820

Further information
Prof. Jean Pieters, University of Basel, Biozentrum, phone +41 61 267 14 94, email: jean.pieters@unibas.ch

www.unibas.ch

Katrin Bühler | Universität Basel

Further reports about: Biozentrum Lack cAMP coronin deficits lacking neurons signals

More articles from Life Sciences:

nachricht More than just a mechanical barrier – epithelial cells actively combat the flu virus
04.05.2016 | Helmholtz-Zentrum für Infektionsforschung

nachricht Discovery of a fundamental limit to the evolution of the genetic code
03.05.2016 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>