Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lack of grey matter in brain is linked to schizophrenia and bipolar disorder

16.01.2009
A research study led by scientists from the Gregorio Marañón University Hospital in Madrid and the Network of Centres for Biomedical Research in Mental Health Networks (CIBERSAM) shows that adolescents experiencing a first outbreak of psychosis have lower levels of grey matter in their brains than healthy teenagers. Strangely, this change was seen in patients suffering from various psychoses, including bipolar illness and schizophrenia.

The objective of the study was to examine and locate differences in the volume of grey matter in the brains of healthy people (controls) and individuals diagnosed with psychotic outbreaks in infancy or adolescence. The researchers broke such psychosis down into three sub-groups – schizophrenia, bipolar disorder and other psychoses that did not fit into either of the other two classifications.

The study, published recently in the Journal of the American Academy of Child and Adolescent Psychiatry, analysed a sample of 121 people aged between 7 and 18, inclusive. All the patients and controls were examined using magnetic resonance imaging in order to detect any possible changes in the structure of their brains.

“The interesting thing was that we found common alterations among those with two types of clinically-differentiated psychoses, schizophrenia and bipolar disorder, and this could help to improve diagnosis of these illnesses,” Santiago Reig, one of the study’s authors and a researcher in the Medical Imaging Laboratory of the Gregorio Marañón Hospital, tells SINC.

The study confirmed these lower levels of grey matter, the brain substance in which neurone cells are concentrated. This lack, which was shared between the schizophrenia and type 1 bipolar illness sufferers, means the functions of this part of the brain are “somehow atrophied”.

In addition, the technique used by the experts can pinpoint the location of these alterations. For example, “patients with early psychotic outbreaks (before the age of 18) showed alterations in the medial prefrontal gyrus region of the brain, which controls processes such as cognition and the regulation of sensations”, says Reig.

Improving diagnosis

“Anything that helps to detect alterations shared between distinct pathologies can help in the development of drugs and in finding common characteristics between these different diseases,” the researcher tells SINC. “Results like these are fundamental for the diagnosis and treatment of illnesses,” he adds.

However, it is important not to draw any causal link between alterations in this area of the brain and the appearance of these pathologies. Psychiatric illnesses need more complex diagnosis. What the research does show, however, is that the majority of people with schizophrenia and type 1 bipolar illness do suffer from this lack of grey matter and the majority of healthy people have normal levels of this substance.

“We still do not know whether this loss of grey matter is caused by the illness or not,” says Reig. This is just one more piece of the puzzle to help in understanding common features of psychiatric illnesses. “Maybe relating these developments with other new findings will one day help us to solve the riddle of psychiatric illnesses,” he concludes.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>