Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lack of cellular enzyme triggers switch in glucose processing

22.01.2010
Understanding mechanism underlying SIRT6 activity may help treat diabetes, cancer

A study investigating how a cellular enzyme affects blood glucose levels in mice provides clues to pathways that may be involved in processes including the regulation of longevity and the proliferation of tumor cells. In their report in the January 22 issue of Cell, a Massachusetts General Hospital (MGH)-based team of researchers describes the mechanism by which absence of the enzyme SIRT6 induces a fatal drop in blood sugar in mice by triggering a switch between two critical cellular processes.

"We found that SIRT6 functions as a master regulator of glucose levels by maintaining the normal processes by which cells convert glucose into energy," says Raul Mostoslavsky, MD, PhD, of the MGH Cancer Center, who led the study. "Learning more about how this protein controls the way cells handle glucose could lead to new approaches to treating type 2 diabetes and even cancer."

SIRT6 belongs to a family of proteins called sirtuins, which regulate important biological pathways in organisms from bacteria to humans. Originally discovered in yeast, sirtuins in mammals have been shown to have important roles in metabolic regulation, programmed cell death and adaptation to stress. SIRT6 is one of seven mammalian sirtuins, and Mostoslavsky's team previously showed that mice lacking the protein die in the first month of life from acute hypoglycemia. The current study was designed to investigate exactly how lack of SIRT6 causes this radical drop in blood sugar.

Normally cells convert glucose into energy through a two-step process. The first stage called glycolysis takes place in the cytoplasm, where glucose is broken down into an acid called pyruvate and a few molecules of ATP, the enzyme that provides the energy to power most biological processes. Pyruvate is taken into cellular structures called mitochondria, where it is further processed to release much greater amounts of ATP through a process called cellular respiration.

In a series of experiments in mouse cells, the researchers showed that SIRT6-deficiency hypoglycemia is caused by increased cellular uptake of glucose and not by elevated insulin levels or defects in the absorption of glucose from food. They then found increased levels of glycolysis and reduced mitochondrial respiration in SIRT6-knockout cells, something usually seen when cells are starved for oxygen or glucose, and showed that activation of the switch from cellular respiration to glycolysis is controlled through SIRT6's regulation of a protein called HIF1alpha. Normally, SIRT6 represses glycolytic genes through its role as a compactor of chromatin – the tightly wound combination of DNA and a protein backbone that makes up chromosomes. In the absence of SIRT6, this structure is opened, causing activation of these glycolytic genes. The investigators' finding increased expression of glycolytic genes in living SIRT6-knockout mice – which also had elevated levels of lactic acid, characteristic of a switch to glycolytic glucose processing – supported their cellular findings.

Studies in yeast, worms and flies have suggested a role for sirtuins in aging and longevity, and while much of the enzymes' activity in mammals is unclear, SIRT6's control of critical glucose-metabolic pathways could signify a contribution to lifespan regulation. Elevated glycolysis also is commonly found in tumor cells, suggesting that a lack of SIRT6 could contribute to tumor growth. Conversely, since knocking out SIRT6 causes blood sugar to drop, limited SIRT6 inhibition could be a novel strategy for treating type 2 diabetes.

"There's a lot we still don't know about SIRT6," adds Mostoslavsky, who is an assistant professor of Medicine at Harvard Medical School. "We need to identify the factors that interact with SIRT6 and determine how it is regulated; investigate whether it acts as a tumor suppressor and how it might help lower glucose levels in diabetes; and determine its target organs in living animals, all of which we are investigating."

Lei Zhong of the MGH Cancer Center is lead author of the Cell report. Co-authors are Agustina D'Urso, Debra Toiber, Carlos Sebastian, Douangsone Vadysirisack, Othon Iliopoulos, and Leif Ellisen, MGH Cancer Center; Alexander Guimaraes, Brett Marinelli, and Ralph Weissleder, MGH Center for Systems Biology; Ryan Henry and Joaquin Espinosa, Howard Hughes Medical Institute; Jakob Wikstrom and Orian Shirihai, Boston University School of Medicine; Tomer Nir and Yuval Dor, Hebrew University-Hadassah Medical School; Clary Clish, Broad Institute; and Bhavapriya Vaitheesvaran, Albert Einstein College of Medicine. The study was supported by grants from the V Foundation, the Sidney Kimmel Cancer Research Foundation, the American Federation for Aging Research, Massachusetts Life Sciences Center, Joslin Diabetes Center and the Boston Area Diabetes Endocrinology Research Center.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $600 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.massachusetts.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>