Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New laboratory test assesses how DNA damage affects protein synthesis

22.08.2012
Research development in lab of UC Riverside's Yinsheng Wang could lead to development of new and effective drugs to treat cancer

Transcription is a cellular process by which genetic information from DNA is copied to messenger RNA for protein production. But anticancer drugs and environmental chemicals can sometimes interrupt this flow of genetic information by causing modifications in DNA.

Chemists at the University of California, Riverside have now developed a test in the lab to examine how such DNA modifications lead to aberrant transcription and ultimately a disruption in protein synthesis.

The chemists report that the method, called "competitive transcription and adduct bypass" or CTAB, can help explain how DNA damage arising from anticancer drugs and environmental chemicals leads to cancer development.

"Aberrant transcription induced by DNA modifications has been proposed as one of the principal inducers of cancer and many other human diseases," said Yinsheng Wang, a professor of chemistry, whose lab led the research. "CTAB can help us quantitatively determine how a DNA modification diminishes the rate and fidelity of transcription in cells. These are useful to know because they affect how accurately protein is synthesized. In other words, CTAB allows us to assess how DNA damage ultimately impedes protein synthesis, how it induces mutant proteins. "

Study results appeared online in Nature Chemical Biology on Aug. 19.

Wang explained that the CTAB method can be used also to examine various proteins involved in the repair of DNA. One of his research group's goals is to understand how DNA damage is repaired — knowledge that could result in the development of new and more effective drugs for cancer treatment.

"This, however, will take more years of research," Wang cautioned.

His lab has a long-standing interest in understanding the biological and human health consequences of DNA damage. The current research was supported by the National Cancer Institute, the National Institute of Environmental Health Sciences and the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health.

Wang was joined in the research by UC Riverside's Changjun You (a postdoctoral scholar and the research paper's first author), Xiaoxia Dai, Bifeng Yuan, Jin Wang and Jianshuang Wang; Philip J. Brooks of the National Institute on Alcohol Abuse and Alcoholism, Md.; and Laura J. Niedernhofer of the University of Pittsburgh School of Medicine, Penn.

Next, the researchers plan to use CTAB to investigate how other types of DNA modifications compromise transcription and how they are repaired in human cells.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>