Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laboratory detective work points to potential therapy for rare, drug-resistant cancer

13.02.2014
University of Pittsburgh Cancer Institute (UPCI) scientists have shown that old drugs might be able to do new tricks.

By screening a library of FDA-approved anticancer drugs that previously wouldn't have been considered as a treatment for a rare type of cancer, UPCI scientists were surprised when they found several potential possibilities to try if the cancer becomes resistant to standard drug treatment.


University of Pittsburgh Cancer Institute researchers screened 89 FDA-approved cancer drugs to see if any of them would be effective against a rare type of tumor. Surprisingly, 37 of the drugs, or 41.5 percent, exhibited promising activity against the tumor in laboratory tests, with two identified as candidates for future clinical trials. The brighter colors indicate anti-cancer activity.

Credit: UPCI

The discovery, which will be published in the February 15th issue of Cancer Research, demonstrates that high-throughput screening of already FDA-approved drugs can identify new therapies that could be rapidly moved to the clinic.

"This is known as 'drug repurposing,' and it is an increasingly promising way to speed up the development of treatments for cancers that do not respond well to standard therapies," said senior author Anette Duensing, M.D., assistant professor of pathology at UPCI. "Drug repurposing builds upon previous research and development efforts, and detailed information about the drug formulation and safety is usually available, meaning that it can be ready for clinical trials much faster than a brand-new drug."

Dr. Duensing and her team ran the screening on 89 drugs previously approved by the FDA in an attempt to find more treatment options for patients with gastrointestinal stromal tumors (GISTs), which are uncommon tumors that begin in the walls of the gastrointestinal tract. According to the American Cancer Society, about 5,000 cases of GISTs occur each year in the United States with an estimated five-year survival rate of 45 percent in patients with advanced disease.

GISTs are caused by a single gene mutation and can be successfully treated with the targeted therapy drug imatinib, known by the trade name Gleevec. However, about half of the patients treated with Gleevec become resistant to the drug within the first two years of treatment.

After studying how samples of GIST responded to various concentrations of the 89 drugs in the laboratory, Dr. Duensing and her colleagues identified 37 compounds that showed some anticancer activity in at least one of the concentrations tested. Importantly, they noted that the most promising candidates all belonged to only two major drug classes: inhibitors of gene transcription and so-called topoisomerase II inhibitors. Based on these findings, the research team selected the two most promising compounds for further testing – gene transcription inhibitor mithramycin A, which is in clinical trials to treat Ewing sarcoma, and topoisomerase II inhibitor mitoxantrone, which is used in metastatic breast cancer and leukemia.

Both drugs were highly effective in fighting GIST in laboratory tests. Moreover, the mechanism of action of each drug was linked to the specific underlying biology of these tumors.

"These are very encouraging results," said Dr. Duensing. "The next step will be moving our findings to clinical exploration to see if the results we found in the lab hold up in patients."

Additional co-authors of this study include Sergei Boichuk, M.D., Ph.D., Derek J. Lee, B.S., Keith R. Mehalek, M.S., Kathleen R. Makielski, M.S., Danushka S. Seneviratne, B.S., Rolando Cuevas, M.S., Joshua A. Parry, B.S., Matthew F. Brown, Ph.D., James P. Zewe, B.S., and Shih-Fan Kuan, M.D., Ph.D., all of Pitt; Agnieszka Wozniak, Ph.D., Patrick Schöffski, M.D., M.P.H., and Maria Debiec-Rychter, M.D., Ph.D., all of the Catholic University in Leuven, Belgium; Nina Korzeniewski, Ph.D., of the University of Heidelberg in Germany; and Takahiro Taguchi, M.D., of Kochi Medical School in Japan.

This research was supported by American Cancer Society grant no. RSG-08-092-01-CCG, The Life Raft Group, GIST Cancer Research Fund and the Howard Hughes Medical Institute.

About UPCI

As the only NCI-designated comprehensive cancer center in western Pennsylvania, UPCI is a recognized leader in providing innovative cancer prevention, detection, diagnosis, and treatment; bio-medical research; compassionate patient care and support; and community-based outreach services. UPCI, a partner with UPMC CancerCenter, investigators are world-renowned for their work in clinical and basic cancer research.

http://www.upmc.com/media

Contact:

Allison Hydzik
Phone: 412-647-9975
E-mail: HydzikAM@upmc.edu
Contact:
Jennifer Yates
Phone: 412-647-9966
E-mail: YatesJC@upmc.edu

Allison Hydzik | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>