Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New label-free method tracks molecules and drugs in live cells

19.12.2008
Simulated Raman scattering microscopy offers high sensitivity in real-time imaging

A new type of highly sensitive microscopy developed by researchers at Harvard University could greatly expand the limits of modern biomedical imaging, allowing scientists to track the location of minuscule metabolites and drugs in living cells and tissues without the use of any kind of fluorescent labeling.

The technique, based on stimulated Raman scattering (SRS), works by detecting the vibrations in chemical bonds between atoms. SRS microscopy could provide scientists with a potent new form of real-time, three-dimensional bioimaging free of fluorescent labels that can hinder many biological processes.

The work is described this week in the journal Science by a team led by Harvard's X. Sunney Xie, Christian W. Freudiger, and Wei Min.

"SRS microscopy is a big leap forward in biomedical imaging, opening up real-time study of metabolism in living cells," says Xie, professor of chemistry and chemical biology in Harvard's Faculty of Arts and Sciences. "We've already used the technology to map lipids in a live cell, and to measure diffusion of medications in living tissue. These are just two early examples of how SRS microscopy may impact cell biology and medicine."

Xie, Freudinger, and Min's mapping of saturated and unsaturated fats in live cells offers exciting new opportunities for metabolic studies of omega-3 fatty acids, required but not produced by the human body. Despite a growing body of evidence suggesting that omega-3 fatty acids provide many health benefits such as dampening inflammation, lowering blood triglyceride levels, and killing cancer cells, almost nothing is known about how fats like omega-3 are actually processed by our bodies.

"Our diets have changed greatly in recent decades," Xie says. "As a unique technology capable of observing fat distribution in live cells -- and of differentiating between types of fat -- SRS microscopy could prove useful in helping understand and treat the growing imbalance of saturated and unsaturated fats in our diets."

SRS microscopy could also prove useful in neuroimaging, since neurons are coated with fatty myelin sheaths.

The researchers' use of SRS microscopy to analyze skin tissue could also open new frontiers in drug development. Xie and colleagues used SRS microscopy to view how well retinoic acid, a topical acne medication, is absorbed into skin cells. They also used the technique to capture deep-skin penetration by dimethyl sulfoxide (DMSO), a compound added to many topical medications and ointments to enhance absorption.

Scientists currently use a variety of techniques to visualize biomolecules, but most have significant limitations that are sidestepped by SRS microscopy. A jellyfish protein first discovered in 1962, green fluorescent protein (GFP), is now used extensively as a label for observing the activity of biomolecules. GFP labeling provides sharp images, but the bulky protein can perturb delicate biological pathways, especially in cases where its heft overwhelms smaller biomolecules. Also, GFP's characteristic glow subsides with time, making it infeasible for long-term tracking.

Much like SRS microscopy, conventional infrared (IR) and Raman microscopies measure the vibrations of chemical bonds between atoms. But they are low-sensitivity imaging techniques, and require either desiccated samples or high laser power, which limits use in imaging live specimens. Coherent anti-Stokes Raman scattering (CARS) microscopy, a field pioneered by Xie's own group, cannot provide clear enough contrast for most molecules.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: GFP Raman SRS Xie biological process chemical bonds fatty acids living cells medication skin cell

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>