Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lab Micro-Sizes Genetics Testing

23.09.2008
Using new "lab on a chip" technology, James Landers hopes to create a hand-held device that may eventually allow physicians, crime scene investigators, pharmacists, even the general public to quickly and inexpensively conduct DNA tests from almost anywhere, without need for a complex and expensive central laboratory.

"We are simplifying and miniaturizing the analytical processes so we can do this work in the field, away from traditional laboratories, with very fast analysis times, and at a greatly reduced cost," said Landers, a University of Virginia professor of chemistry and mechanical engineering and associate professor of pathology.

Landers published a review this month of his research and the emerging field of lab-on-a-chip technology in the journal Analytical Chemistry.

"This area of research has matured enough during the last five years to allow us to seriously consider future possibilities for devices that would allow sample-in, answer-out capabilities from almost anywhere," he said.

Landers and a team of researchers at U.Va., including mechanical and electrical engineers, with input from pathologists and physicians, are designing a hand-held device — based on a unit the size of a microscope slide — that houses many of the analytical tools of an entire laboratory, in extreme miniature. The unit can test, for example, a pin-prick-size droplet of blood, and within an hour provide a DNA analysis.

"In creating these automated micro-fluidic devices, we can now begin to do macro-chemistry at the microscale," Landers said.

Such a device could be used in a doctor's office, for example, to quickly test for an array of infectious diseases, such as anthrax, avian flu or HIV, as well as for cancer or genetic defects. Because of the quick turn-around time, a patient would be able to wait only a short time on-site for a diagnosis. Appropriate treatment, if needed, could begin immediately.

Currently, test tube-size fluid samples are sent to external labs for analysis, usually requiring a 24- to 48-hour wait for a result.

"Time is of the essence when dealing with an infectious disease such as meningitis," Landers said. "We can greatly reduce that test time, and reduce the anxiety a patient experiences while waiting."

Landers said the research also dovetails with the trend toward "personalized medicine," in which medical care increasingly is tailored to the specific genetic profile of a patient. Such highly specialized personalized care can allow physicians to develop specific therapies for patients who might be susceptible to, for example, particular types of cancers.

Simplifying genetic testing, and reducing the costs of such tests, could help pave the way toward routine delivery of such personalized care based on an individual's genetic profile.

Hand-held micro labs also would be useful to crime scene investigators who could collect and analyze even a tiny sample of blood or semen on-site, enter the finding into a genetic database, and possibly identify the perpetrator very shortly after a crime has occurred.

Likewise, agricultural biotechnologists could do very rapid genetic analysis on
thousands of hybrid plants that have desirable properties such as drought and disease resistance, Landers said.

"We can now do lab work in volumes that are thousands of times smaller than would normally be used in a regular lab setup, and can do it up to 100 times faster," he said. "As we improve our techniques and capabilities, the costs of fabricating these micro-analysis devices will drop enough to employ them routinely in a wide variety of settings."

Landers even envisions home DNA test kits, possibly available for purchase from pharmacies, that would allow individuals to self-test for flu or other diseases.

His colleagues at U.Va. include Mathew Begley, professor of mechanical engineering, Molly Hughes, assistant professor of internal medicine, and Sanford Feldman, director of the Center for Comparative Medicine.

Fariss Samarrai | Newswise Science News
Further information:
http://www.virginia.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>