Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lab-grown, virus-free stem cells repair retinal tissue in mice

24.01.2014
Investigators at Johns Hopkins report they have developed human induced-pluripotent stem cells (iPSCs) capable of repairing damaged retinal vascular tissue in mice.

The stem cells, derived from human umbilical cord-blood and coaxed into an embryonic-like state, were grown without the conventional use of viruses, which can mutate genes and initiate cancers, according to the scientists.

Their safer method of growing the cells has drawn increased support among scientists, they say, and paves the way for a stem cell bank of cord-blood derived iPSCs to advance regenerative medicine research.

In a report published Jan. 20 in the journal Circulation, stem cell biologist Elias Zambidis, M.D., Ph.D., and his colleagues describe laboratory experiments with these non-viral, human retinal iPSCs, created using the virus-free method Zambidis first reported in 2011.

"We began with stem cells taken from cord-blood, which have fewer acquired mutations and little, if any, epigenetic memory, which cells accumulate as time goes on," says Zambidis, associate professor of oncology and pediatrics at the Johns Hopkins Institute for Cell Engineering and the Kimmel Cancer Center. The scientists converted these cells to a status last experienced when they were part of six-day-old embryos.

Instead of using viruses to deliver a gene package to the cells to turn on processes that convert the cells back to stem cell states, Zambidis and his team used plasmids, rings of DNA that replicate briefly inside cells and then degrade.

Next, the scientists identified high-quality, multipotent, vascular stem cells generated from these iPSC that can make a type of blood vessel-rich tissue necessary for repairing retinal and other human material. They identified these cells by looking for cell surface proteins called CD31 and CD146. Zambidis says that they were able to create twice as many well-functioning vascular stem cells as compared with iPSCs made with other methods, and, "more importantly these cells engrafted and integrated into functioning blood vessels in damaged mouse retina."

Working with Gerard Lutty, Ph.D., and his team at Johns Hopkins' Wilmer Eye Institute, Zambidis' team injected the newly derived iPSCs into mice with damaged retinas, the light-sensitive part of the eyeball. Injections were given in the eye, the sinus cavity near the eye or into a tail vein. When the scientists took images of the mice retinas, they found that the iPSCs, regardless of injection location, engrafted and repaired blood vessel structures in the retina.

"The blood vessels enlarged like a balloon in each of the locations where the iPSCs engrafted," says Zambidis. The scientists said their cord blood-derived iPSCs compared very well with the ability of human embryonic-derived iPSCs to repair retinal damage.

Zambidis says there are plans to conduct additional experiments of their cells in diabetic rats, whose conditions more closely resemble human vascular damage to the retina than the mouse model used for the current study, he says.

With mounting requests from other laboratories, Zambidis says he frequently shares his cord blood-derived iPSC with other scientists. "The popular belief that iPSCs therapies need to be specific to individual patients may not be the case," says Zambidis. He points to recent success of partially matched bone marrow transplants in humans, shown to be equally as effective as fully matched transplants.

"Support is growing for building a large bank of iPSCs that scientists around the world can access," says Zambidis, although large resources and intense quality- control would be needed for such a feat. However, Japanese scientists led by stem-cell pioneer Shinya Yamanaka are doing exactly that, he says, creating a bank of stem cells derived from cord-blood samples from Japanese blood banks.

Experiments published in Zambidis' Circulation article were funded by grants from the Maryland Stem Cell Research Fund, the National Institutes of Health's National Heart, Lung and Blood Institute (HL099775, HL100397), National Eye Institute (EY09357), National Cancer Institute (CA60441); and Research to Prevent Blindness.

Under a licensing agreement between Life Technologies and the Johns Hopkins University, Zambidis is entitled to a share of royalties received by the University for licensing of stem cells. The terms of this arrangement are managed by Johns Hopkins University in accordance with its conflict-of-interest policies.

Scientists contributing to the research include Tea Soon Park, Imran Bhutto, Ludovic Zimmerlin, Jeffrey Huo, Pratik Nagaria, Connie Talbot, Jack Auilar, Rhonda Grebe, Carol Merges, and Gerard Lutty from Johns Hopkins; Diana Miller, Ricardo Feldman and Reyruz Rassool from the University of Maryland School of Medicine; Abdul Jalil Rufaihah, Renee Reijo-Pera, and John Cooke from Stanford University.

*Available upon request is an image of iPSC-derived vascular stem cells incorporating into a damaged retinal blood vessel and repairing it.

On the Web:

Related news release: Johns Hopkins Researchers Return Blood Cells to Stem Cell State

Media Contacts: Vanessa Wasta, 410-614-2916, wasta@jhmi.edu
Amy Mone, 410-614-2915, amone@jhmi.edu

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>