Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

La vie en rouge

28.03.2013
An international consortium of scientist has sequenced the genome of the common red seaweed, Irish moss (Chondrus crispus). With this work we now know much more about how red algae work, how they make their biomolecules, and the evolution of plants and algae. The results was published in Proceedings of the National Academy of Sciences.

Walking on a rocky intertidal shore you will see a fascinating landscape often dominated by large algae of different sorts. It is a beautiful environment full of fantastic discoveries including the enigmatic seaweeds. Despite the absence of flowers, colour is not lacking among the algae; the normal colour of grass and herbs is here often replaced with more red and brown than green.

The red colour is provided by the red seaweeds. The red seaweeds are the evolutionary sister group to all green plants and algae and had common ancestor approximately 1,500 million years ago. Compared to the green plants we know very little of red algae, even though according to the secondary endosymbiosis theory, their photosynthetic machinery has been adopted by a majority of the phytoplankton, including diatoms and dinoflagellates.

To learn more about these enigmatic plants biologist Stefan Rensing from the University of Marburg together with an international consortium led by the Station Biologique de Roscoff has analyzed the genome of Chondrus crispus, or Irish moss. The consortium is led by the Station Biologique de Roscoff in Brittany, France, belonging to Le Centre national de la recherche scientifique (CNRS) and Université Pierre et Marie Curie (UPMC).

The genome was sequenced and informatically annotated by the French National Sequencing Center, Genoscope. Chondrus is an up to 20 cm typical red seaweed commonly found on rocky shores in the Northern Atlantic. This species has historically been used as one way to make blancmange, a dessert that can be made by boiling Irish moss with milk and sugar. The compound that thickens the milk, carrageenan, is nowadays used in the food industry (E407) in products like ice-cream and pudding. Globally, red algae are used as food and as a source of thickeners and represent a value of over 2,000 million US dollars annually.

What we found when analysing the genome was that the red seaweeds are very different to their green cousins: they have fewer genes than most of their green relatives, the genes are more compact and many genes are not found in the two groups. The sequencing of the genome has helped us to understand the evolution of plants: we propose that the red algae went through a bottleneck in their evolution, loosing many of the genes and reduced their size. Today’s land plants and trees are green; without this bottleneck for the red algae maybe our trees and flowers would have been red...

The genome also helps us to understand how the red algae are related to other organisms, how they live in their environment and how they produce their biomolecules, such as carrageenans, and will greatly accelerate efforts to understand the biology of these fascinating organisms in the coming years.

The Chondrus consortium included laboratories from France, Germany, United Kingdom, Czech Republic, Spain, Egypt, Norway and Greece. Major funding, informatics support and sequencing strategy were provided by the French Genome Center Genoscope.

Reference: Jonas Collén & al.: Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida, PNAS 110 (13)/2013, 5247-5252, doi: 10.1073/pnas.1221259110

Contact person: Professor Dr. Stefan Rensing,
Faculty of Biology
E-Mail: stefan.rensing@biologie.uni-marburg.de
Internet: http://plantco.de

Johannes Scholten | idw
Further information:
http://www.uni-marburg.de
http://plantco.de

Further reports about: Algae Chondrus Genom Genoscope Phytoplankton dinoflagellates green plants red alga

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>