Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

La vie en rouge

28.03.2013
An international consortium of scientist has sequenced the genome of the common red seaweed, Irish moss (Chondrus crispus). With this work we now know much more about how red algae work, how they make their biomolecules, and the evolution of plants and algae. The results was published in Proceedings of the National Academy of Sciences.

Walking on a rocky intertidal shore you will see a fascinating landscape often dominated by large algae of different sorts. It is a beautiful environment full of fantastic discoveries including the enigmatic seaweeds. Despite the absence of flowers, colour is not lacking among the algae; the normal colour of grass and herbs is here often replaced with more red and brown than green.

The red colour is provided by the red seaweeds. The red seaweeds are the evolutionary sister group to all green plants and algae and had common ancestor approximately 1,500 million years ago. Compared to the green plants we know very little of red algae, even though according to the secondary endosymbiosis theory, their photosynthetic machinery has been adopted by a majority of the phytoplankton, including diatoms and dinoflagellates.

To learn more about these enigmatic plants biologist Stefan Rensing from the University of Marburg together with an international consortium led by the Station Biologique de Roscoff has analyzed the genome of Chondrus crispus, or Irish moss. The consortium is led by the Station Biologique de Roscoff in Brittany, France, belonging to Le Centre national de la recherche scientifique (CNRS) and Université Pierre et Marie Curie (UPMC).

The genome was sequenced and informatically annotated by the French National Sequencing Center, Genoscope. Chondrus is an up to 20 cm typical red seaweed commonly found on rocky shores in the Northern Atlantic. This species has historically been used as one way to make blancmange, a dessert that can be made by boiling Irish moss with milk and sugar. The compound that thickens the milk, carrageenan, is nowadays used in the food industry (E407) in products like ice-cream and pudding. Globally, red algae are used as food and as a source of thickeners and represent a value of over 2,000 million US dollars annually.

What we found when analysing the genome was that the red seaweeds are very different to their green cousins: they have fewer genes than most of their green relatives, the genes are more compact and many genes are not found in the two groups. The sequencing of the genome has helped us to understand the evolution of plants: we propose that the red algae went through a bottleneck in their evolution, loosing many of the genes and reduced their size. Today’s land plants and trees are green; without this bottleneck for the red algae maybe our trees and flowers would have been red...

The genome also helps us to understand how the red algae are related to other organisms, how they live in their environment and how they produce their biomolecules, such as carrageenans, and will greatly accelerate efforts to understand the biology of these fascinating organisms in the coming years.

The Chondrus consortium included laboratories from France, Germany, United Kingdom, Czech Republic, Spain, Egypt, Norway and Greece. Major funding, informatics support and sequencing strategy were provided by the French Genome Center Genoscope.

Reference: Jonas Collén & al.: Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida, PNAS 110 (13)/2013, 5247-5252, doi: 10.1073/pnas.1221259110

Contact person: Professor Dr. Stefan Rensing,
Faculty of Biology
E-Mail: stefan.rensing@biologie.uni-marburg.de
Internet: http://plantco.de

Johannes Scholten | idw
Further information:
http://www.uni-marburg.de
http://plantco.de

Further reports about: Algae Chondrus Genom Genoscope Phytoplankton dinoflagellates green plants red alga

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>