Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


La Jolla Institute discovers novel tumor suppressor

Finding could lead to new therapies for myeloproliferative diseases and some blood cancers

La Jolla Institute for Allergy & Immunology researchers studying an enzyme believed to play a role in allergy onset, instead have discovered its previously unknown role as a tumor suppressor that may be important in myeloproliferative diseases and some types of lymphoma and leukemia.

Myeloproliferative diseases are a group of disorders characterized by an overproduction of blood cells by the bone marrow and include chronic myeloid leukemia. Lymphoma and leukemia are cancers of the blood.

"PLC-beta 3 is an enzyme, but the function we found was a completely different function that no one knew it had -- as a tumor suppressor," said the La Jolla Institute's Toshiaki Kawakami, M.D., Ph.D., who led the research team. The study, conducted in animal models, could eventually lead to the development of new therapies directed towards controlling this newly discovered cellular mechanism.

Tony Hunter, Ph.D., director of the Salk Institute Cancer Center and a professor in Salk's Molecular and Cell Biology Laboratory, called the finding an "important" step in advancing understanding of blood cancers. "It's very interesting that this molecule acts in this way independently of its enzyme activity," he said. "It's quite an unexpected finding and it definitely has the potential for helping the scientific community understand the mechanisms leading to some types of leukemia."

The findings are being published online today in the journal Cancer Cell in a paper entitled "Tumor Suppression by Phospholipase C- 3 via SHP-1-Mediated Dephosphorylation of STAT5." Researchers from UC San Diego Cancer Center, University of Alabama and the University of Western Ontario also contributed to the study.

Dr. Kawakami said he and his research team got their first inkling of something unexpected fairly early on in their experiments. "We wanted to better understand the PLC-beta 3 enzyme's possible role as a signaling pathway in asthma and other allergic diseases, so we began working with mice genetically engineered not to have that enzyme," he said. "We noticed that these mice developed a strange phenotype – myeloproliferation and a variety of tumors including lymphomas and some carcinomas."

Dr. Kawakami said this surprising occurrence suggested that PLC-beta 3 acted as a safeguard that inhibited the development of a variety of tumors. He and his team set out to investigate further, choosing to focus specifically on myeloproliferative disease because almost all of the mice with a defective PLC-beta 3 gene eventually developed severe myeloproliferative disease.

The team determined that tumor production hinged on the PLC-beta 3's ability to block the action of STAT5, a transcription factor protein than can switch on many genes known to control cell proliferation, survival and, in the case of blood stem cells, to promote the development of myeloid cells. Myeloproliferative diseases develop when myeloid cells -- which make certain types of white blood cells—become overactive. "In the absence of the PLC-beta 3 protein, STAT5 goes into a state of constant activation, causing the development of abnormal myeloid cells," said Dr. Kawakami. The abnormal cells, which are essentially tumor cells, become overactive and produce too many blood cells leading to myeloproliferative disease, he explained.

The researchers also tested the finding by introducing an inactive form of STAT5 in PLC-beta 3 deficient mice. "This suppressed myeloproliferative disease in these mice," Dr. Kawakami continued.

Dr. Kawakami said his research team got similar results in tests of human cells from people with Burkitt's lymphoma, an aggressive type of B-cell lymphoma that occurs most often in children and young adults. "Some Burkitt's lymphoma cells have very little PLC-beta 3 expression and have very high levels of STAT5 activity, which is similar to our findings in myeloproliferative disease," he said. "We also have done human cell testing in some other lymphomas and leukemias -- including myeloid leukemia -- indicating that these diseases also use this mechanism (low expression of PLC-beta 3 and high STAT5 activity)."

Dr. Kawakami added that much work still needs to be done. "Our findings need to be explored in other tumors. And, of course, its application in human disease needs further study. But we hope other researchers will be encouraged by our work and that it will prompt not only further analysis of this mechanism's role in various diseases, but attempts to develop drugs that would augment PLC-beta 3 in target cells."

About La Jolla Institute

Founded in 1988, the La Jolla Institute for Allergy & Immunology is a biomedical research nonprofit focused on improving human health through increased understanding of the immune system. Its scientists carry out research seeking new knowledge leading to the prevention of disease through vaccines and the treatment and cure of infectious diseases, cancer and autoimmune diseases such as rheumatoid arthritis, type 1 (juvenile) diabetes, Crohn's disease and asthma. La Jolla Institute's research staff includes more than 100 Ph.D.s and M.D.s.

Bonnie Ward | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>